R语言基础数据分析:单因素方差分析
创作时间:
作者:
@小白创作中心
R语言基础数据分析:单因素方差分析
引用
CSDN
1.
https://blog.csdn.net/m0_61206827/article/details/121367273
本实验旨在探究不同浓度的氮肥(N1、N2、N3、N4、N5)对植物根际土壤硝态氮浓度的影响。实验数据来源于某农业研究机构的公开数据集。
在进行数据分析之前,我们需要对试验数据进行检验,即独立性检验、正态性检验、方差齐性检验,若三者检验符合条件,则我们可以进行参数分析,如果不符合条件则只能进行非参数分析。
(参数分析:假定数据服从某分布(一般为正态分布),通过样本参数的估计量(x±s)对总体参数(μ)进行检验,比如t检验、方差分析、Pearson的相关分析等。非参数分析:不需要假定总体分布形式,直接对数据的分布进行检验。由于不涉及总体分布的参数,故名「非参数」检验,包括卡方检验、二项分布检验、K-S检验、秩和检验、符号检验、Spearman和Kendall的相关性分析等)
接下来,我演示一个R语言进行的参数分析的单因素方差分析。
原始数据:探究添加不同浓度的氮肥(N1,N2,N3,N4,N5)对植物根际土壤硝态氮的浓度影响
(同学们使用edit()函数,把我的数据仿照输入,这样你们的数据不需要整理,直接进入数据重构的那步。)
data<-data.frame(N1=numeric(0),N2=numeric(0),N3=numeric(0),N4=numeric(0),N5=numeric(0))
data<-edit(data)
第一步:进行数据整理与重构
library(readxl)
DN <- read_excel("C:/Users/lenovo/Desktop/DN.xlsx")
View(DN)
DN
data<-edit(DN)#打开数据编辑表,查看和编辑数据
发现数据错误,进行数据的调整(见上一文章)
library(tidyverse)
library(gcookbook)
data<-DN%>%select(N1,N2,N3,N4,N5)
data
数据重构:
library(reshape2)
data <- melt(data,id=c())#进行数据的合并重构
names(data) <- c('trt', 'val')
data
第二步:对数据进行参数检验(独立性、正态性和方差齐性检验)
data1<-table(data$trt,data$val)
chisq.test(data1)#独立性检验函数chisq.test()
shapiro.test(data$val)#shaprio.test()正态性性检验函数
bartlett.test(val~trt,data)#方差齐性检验函数bartlett.test()
可以看到三大参数检验P>0.05,即接受原假设,数据满足独立性,正态性和方差齐性。
第三步:单因素方差分析和多重比较
单因素方差分析
aov<-aov(val~trt,data=data)#单因素方差分析
summary(aov)
P<0.05,拒绝原假设,各组试验结果均值存在差异,即添加不同浓度的氮肥对植物根际土壤的硝态氮浓度存在影响差异。
多重比较:介绍两种函数LSD.test()和Duncan.test()
library(agricolae)
data2<-LSD.test(aov,'trt',p.adj = 'bonferroni')#'bonferroni'对P值进行修正
print(data2$groups)
plot(data2)
可以看到不同组别之间的显著性差异。
data3<-duncan.test(aov,'trt')#duncan.test()函数
data3$groups
plot(data3)
第四步:提取关键数据并处理(以Duncan多重比较为例)
mean<-aggregate(data$val,by=list(trt=data$trt),FUN=mean)#计算均值
sd<-aggregate(data$val,by=list(trt=data$trt),FUN=sd)#计算标准偏差
se<-sd$x/sqrt(nrow(data)/nrow(sd)) #计算标准误差
new<-data.frame(trt=mean$trt,mean=mean$x,sd=sd$x,se) #对计算后的数据重构
label<-data.frame(mean=data3$groups$val,label=data3$groups$groups) #添加多重比较结果
total<-merge(new,label,by="mean") #合并数据
total
第五步:根据结果画图
p<-ggplot(total,aes(trt,mean))+geom_bar(stat="identity",fill="grey50",width = 0.5)
p1<-p+geom_errorbar(aes(ymin=mean-se,ymax=mean+se),width=0.1)+geom_text(aes(y=mean+se,label=label,vjust=-0.5,hjust="center"))
p2<-p1+theme(panel.grid.major = element_blank(),panel.grid.minor=element_blank(),panel.background = element_blank(),axis.line=element_line(colour="black",size=0.6))
p3<-p2+labs(x="不同的氮肥添加浓度",y="植物根际土壤硝态氮浓度")+ylim(0,200)
p3
end~
热门推荐
如何在英语中恰当地表达歉意的多种方式与场合分析
中医神奇的情志疗法:喜怒哀乐皆是药
辛金的喜忌与喜用神详解
单身不等于孤独:如何在独身生活中找到快乐与满足
跨界合作与企业管理:构建共赢生态的策略
易武:一座茶马古道上的历史文化名镇
看似平常的早餐,也可能暗藏着健康杀手?
“上幼儿园不哭不闹的娃,大多来自这3种家庭”,园长一语道破!
三种自制象棋棋子教程:从木材雕刻到彩纸剪裁
心房扑动处理原则是什么
旋片真空泵技术解析:从结构原理到莱诺品牌应用
开车时,怎么正确踩刹车和油门?好多人都做错了
什么是功能性文盲?
法国大师草莓果酱「Christine Ferber 配方」
古代皇后在后宫的生活是怎样的,真如影视剧那般风光无限吗
轻松去除贴纸的技巧:有效方法与小窍门解析
卡业联盟:社交技巧提升:建立良好人际关系的策略
公文写作中标题的层级结构及其格式要求
财富流沙盘推演:模拟人生,智慧生活
如何介绍房子以吸引潜在买家?房屋介绍的技巧和要点有哪些?
妊娠期缺乏维生素D对孕妇及其子代的影响:综述
真实的自己,无需刻意展示
到底什么是大模型?大模型与小模型之间有什么区别
便秘的危害与调理方法:从生活调整到专业治疗
萌猫七大乐事曝光!看你家喵星人是否也在享受幸福生活!
傅佩荣教授讲解《道德经》第四十七章:圣人的“三不”原则(上)
扁桃体一定要切除吗?切除后会影响免疫力吗?
新疆喀什的位置有多重要?周围居然有八个首都,结合地图了解一下
校服与学校品牌:校服作为学校形象的重要元素
提高公众号内容创作效率的实用技巧与选题规划方法