高性能轻质难熔高熵合金新突破:数据驱动、逐层多目标设计
高性能轻质难熔高熵合金新突破:数据驱动、逐层多目标设计
轻质难熔高熵合金因其低密度、高强度、高硬度和耐腐蚀等特性,在航空、航天和核能等领域展现出巨大的应用潜力。然而,由于其成分空间巨大且元素间相互作用复杂,新型高性能轻质难熔高熵合金的设计一直面临巨大挑战。近日,中南大学粉末冶金国家重点实验室张利军教授团队在这一领域取得重要突破,提出了一种基于机器学习的合金设计新策略,成功开发出三种具有优异硬度和耐腐蚀性能的新型合金成分。
轻质难熔高熵合金由轻质的Al、Ti以及难熔Nb、Mo、Hf等元素构成,具有较低的合金密度,同时继承了传统MoNbTaWHf基难熔高熵合金高强度、高硬度、耐腐蚀等特性,在高温结构材料领域具有重要的应用价值。但高熵合金成分空间大、元素间相互作用复杂,五元系合金中不同成分的组合就高达数十万种。新型高性能轻质难熔高熵合金的设计难度大。同时,由于加入了轻质的Al、Zr、Ti等化合物易形成元素,合金中会出现Laves等复杂的金属间化合物相,这些硬质相的出现会提升合金的硬度,但却加剧了基体相与第二相之间的点蚀,显著降低合金耐腐蚀性能,导致合金硬度和耐腐蚀性能之间存在着强烈的制约关系。因此,如何突破合金性能的限制,在高维成分空间内快速设计出高综合性能的轻质难熔高熵合金成分是亟需解决的难题。
图1 数据驱动的超硬超耐蚀轻质难熔高熵合金逐层多目标设计流程图
来自中南大学粉末冶金国家重点实验室的张利军教授团队,提出了一种结合特征分析与多目标优化设计方法的机器学习驱动合金设计策略,可用少量已报道的实验数据来训练模型,进而实现轻质难熔高熵合金相结构与力学性能的准确预测。基于该方法,他们建立了AlNbTiVZrCrMoHf系轻质难熔高熵合金“成分-组织-性能”定量化关系模型,通过对合金相结构、密度、熔点、硬度和腐蚀性能进行逐步地预测和筛选,成功突破合金硬度与耐腐蚀性能的制约关系,实现了三种超硬超耐蚀新型合金成分的高效开发设计。
图2 数据驱动携手逐层多目标设计的高性能轻质难熔高熵合金性能与文献数据的对比
此外,该研究还利用机器学习模型可解释性分析技术发现:高的价电子浓度(VEC)和低的混合焓(ΔHmix)有利于获得高硬度的轻质难熔高熵合金。提高Al元素含量会增强固溶强化效果,而增大Ti元素含量会提升抗氯离子点蚀性能。
图3 机器学习模型的可解释性分析
这项研究不仅为高性能轻质难熔高熵合金的设计提供了新的思路和方法,还展示了机器学习在材料科学中的巨大应用潜力。通过数据驱动的设计策略,研究团队成功开发出三种具有优异硬度和耐腐蚀性能的新型合金成分,其密度均在6.5 g/cm³左右,最高硬度达到593 HV,最大点蚀电位达到2.5 VSCE,远超现有文献报道的同类合金性能。这一成果不仅推动了轻质难熔高熵合金的研究进展,也为其他高熵合金体系的设计提供了重要参考。