动态规划 — 最长递增子序列(从原理到实现详解)
动态规划 — 最长递增子序列(从原理到实现详解)
最长递增子序列是一个非常经典的算法问题,比较容易想到的就是使用动态规划,时间复杂度是
O(n^2), 比较难想到的是二分搜索法,时间复杂度是O(nlogn),在一定的程度上降低了时间复杂度,最长递增子序列主要的设计思想就是数学归纳思想。
新手易混词的辨析
“子序列”:不一定是连续的
“字串”:一定是连续的
一、动态规划解法
动态规划的核心设计思想是数学归纳法。
相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在
k < n
时成立,然后根据这个假设,想办法推导证明出
k = n
的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于
k
等于任何数都成立。
类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设
dp[0...i-1]
都已经被算出来了,然后问自己:怎么通过这些结果算出
dp[i]
?
直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即
dp[i]
的值到底代表着什么?
我们的定义是这样的:
dp[i]
表示以
nums[i]
这个数结尾的最长递增子序列的长度。
PS:为什么这样定义呢?这是解决子序列问题的一个套路,后文 动态规划之子序列问题解题模板 总结了几种常见套路。你读完本章所有的动态规划问题,就会发现
dp
数组的定义方法也就那几种。
根据这个定义,我们就可以推出 base case:
dp[i]
初始值为 1,因为以
nums[i]
结尾的最长递增子序列起码要包含它自己。
举两个例子:
这个 GIF 展示了算法演进的过程:
根据这个定义,我们的最终结果(子序列的最大长度)应该是 dp 数组中的最大值。
int res = 0;
for (int i = 0; i < dp.length; i++) {
res = Math.max(res, dp[i]);
}
return res;
读者也许会问,刚才的算法演进过程中每个
dp[i]
的结果是我们肉眼看出来的,我们应该怎么设计算法逻辑来正确计算每个
dp[i]
呢?
这就是动态规划的重头戏,如何设计算法逻辑进行状态转移,才能正确运行呢?这里需要使用数学归纳的思想:
假设我们已经知道了
dp[0..4]
的所有结果,我们如何通过这些已知结果推出
dp[5]
呢?
根据刚才我们对
dp
数组的定义,现在想求
dp[5]
的值,也就是想求以
nums[5]
为结尾的最长递增子序列。
**
nums[5] = 3
,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到这些子序列末尾,就可以形成一个新的递增子序列,而且这个新的子序列长度加一**。
nums[5]
前面有哪些元素小于
nums[5]
?这个好算,用 for 循环比较一波就能把这些元素找出来。
以这些元素为结尾的最长递增子序列的长度是多少?回顾一下我们对
dp
数组的定义,它记录的正是以每个元素为末尾的最长递增子序列的长度。
以我们举的例子来说,
nums[0]
和
nums[4]
都是小于
nums[5]
的,然后对比
dp[0]
和
dp[4]
的值,我们让
nums[5]
和更长的递增子序列结合,得出
dp[5] = 3
:
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
当
i = 5
时,这段代码的逻辑就可以算出
dp[5]
。其实到这里,这道算法题我们就基本做完了。
读者也许会问,我们刚才只是算了
dp[5]
呀,
dp[4]
,
dp[3]
这些怎么算呢?类似数学归纳法,你已经可以算出
dp[5]
了,其他的就都可以算出来:
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
// 寻找 nums[0..j-1] 中比 nums[i] 小的元素
if (nums[i] > nums[j]) {
// 把 nums[i] 接在后面,即可形成长度为 dp[j] + 1,
// 且以 nums[i] 为结尾的递增子序列
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
结合我们刚才说的 base case,下面我们看一下完整代码:
int lengthOfLIS(int[] nums) {
// 定义:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度
int[] dp = new int[nums.length];
// base case:dp 数组全都初始化为 1
Arrays.fill(dp, 1);
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j])
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
int res = 0;
for (int i = 0; i < dp.length; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
至此,这道题就解决了,时间复杂度
O(N^2)
。总结一下如何找到动态规划的状态转移关系:
1、明确
dp
数组的定义。这一步对于任何动态规划问题都很重要,如果不得当或者不够清晰,会阻碍之后的步骤。
2、根据
dp
数组的定义,运用数学归纳法的思想,假设
dp[0...i-1]
都已知,想办法求出
dp[i]
,一旦这一步完成,整个题目基本就解决了。
但如果无法完成这一步,很可能就是
dp
数组的定义不够恰当,需要重新定义
dp
数组的含义;或者可能是
dp
数组存储的信息还不够,不足以推出下一步的答案,需要把
dp
数组扩大成二维数组甚至三维数组。
目前的解法是标准的动态规划,但对最长递增子序列问题来说,这个解法不是最优的,可能无法通过所有测试用例了,下面讲讲更高效的解法。
二、二分查找法
这个解法的时间复杂度为
O(NlogN)
,但是说实话,正常人基本想不到这种解法(也许玩过某些纸牌游戏的人可以想出来)。所以大家了解一下就好,正常情况下能够给出动态规划解法就已经很不错了。
根据题目的意思,我都很难想象这个问题竟然能和二分查找扯上关系。其实最长递增子序列和一种叫做 patience game 的纸牌游戏有关,甚至有一种排序方法就叫做 patience sorting(耐心排序)。
为了简单起见,后文跳过所有数学证明,通过一个简化的例子来理解一下算法思路。
首先,给你一排扑克牌,我们像遍历数组那样从左到右一张一张处理这些扑克牌,最终要把这些牌分成若干堆。
处理这些扑克牌要遵循以下规则:
只能把点数小的牌压到点数比它大的牌上;如果当前牌点数较大没有可以放置的堆,则新建一个堆,把这张牌放进去;如果当前牌有多个堆可供选择,则选择最左边的那一堆放置。
比如说上述的扑克牌最终会被分成这样 5 堆(我们认为纸牌 A 的牌面是最大的,纸牌 2 的牌面是最小的)。
为什么遇到多个可选择堆的时候要放到最左边的堆上呢?因为这样可以保证牌堆顶的牌有序(2, 4, 7, 8, Q),证明略。
按照上述规则执行,可以算出最长递增子序列,牌的堆数就是最长递增子序列的长度,证明略。
我们只要把处理扑克牌的过程编程写出来即可。每次处理一张扑克牌不是要找一个合适的牌堆顶来放吗,牌堆顶的牌不是有序吗,这就能用到二分查找了:用二分查找来搜索当前牌应放置的位置。
int lengthOfLIS(int[] nums) {
int[] top = new int[nums.length];
// 牌堆数初始化为 0
int piles = 0;
for (int i = 0; i < nums.length; i++) {
// 要处理的扑克牌
int poker = nums[i];
/***** 搜索左侧边界的二分查找 *****/
int left = 0, right = piles;
while (left < right) {
int mid = (left + right) / 2;
if (top[mid] > poker) {
right = mid;
} else if (top[mid] < poker) {
left = mid + 1;
} else {
right = mid;
}
}
/*********************************/
// 没找到合适的牌堆,新建一堆
if (left == piles) piles++;
// 把这张牌放到牌堆顶
top[left] = poker;
}
// 牌堆数就是 LIS 长度
return piles;
}
至此,二分查找的解法也讲解完毕。
这个解法确实很难想到。首先涉及数学证明,谁能想到按照这些规则执行,就能得到最长递增子序列呢?其次还有二分查找的运用,要是对二分查找的细节不清楚,给了思路也很难写对。
所以,这个方法作为思维拓展好了。但动态规划的设计方法应该完全理解:假设之前的答案已知,利用数学归纳的思想正确进行状态的推演转移,最终得到答案。