非极大值抑制(NMS)及其变体详解
创作时间:
作者:
@小白创作中心
非极大值抑制(NMS)及其变体详解
引用
CSDN
1.
https://blog.csdn.net/2401_89898861/article/details/145911797
非极大值抑制(NMS)是目标检测算法中的关键步骤,用于去除冗余预测框并保留高置信度的预测结果。本文将详细介绍NMS的基本原理、步骤以及具体实现方法。
非极大值抑制(NMS)及其变体
非极大值抑制(Non-Maximum Suppression, NMS)是目标检测算法中一个非常关键的步骤,常用于去除冗余的预测框,并且保留具有最高置信度的预测框。它通过抑制那些与其他框重叠度较高的低置信度框,来确保最终输出的框是最优的。
1. NMS(Non-Maximum Suppression)的定义
NMS 的基本思想是:对于每个目标类别的所有预测框,首先根据置信度对预测框进行排序,然后选出置信度最高的框,接着去掉与这个框重叠度(IoU)较高的框,最后继续选出下一个置信度最高的框,重复此过程,直到所有预测框都处理完。
NMS 的步骤
- 排序:根据框的置信度对预测框进行排序,从置信度最高的框开始。
- 选择:选择排序后的第一个框作为最终结果。
- 计算 IOU(Intersection over Union):计算当前框与所有其他框的 IOU 值。
- 抑制:如果当前框与其他框的 IOU 大于预设的阈值,则抑制该框(即删除)。
- 重复:重复上述步骤,直到所有框都被处理完。
NMS 算法公式
IoU (Intersection over Union):用于衡量两个矩形框的重叠度。公式如下:
其中:
- Area of Intersection:两个框交集区域的面积。
- Area of Union:两个框并集区域的面积。
- 置信度:每个框都有一个置信度分数,代表该框是目标的可能性。
标准 NMS 伪代码
def nms(boxes, scores, iou_threshold):
"""
:param boxes: 一个形状为 [N, 4] 的 numpy 数组,表示 N 个边界框 [x1, y1, x2, y2]。
:param scores: 一个形状为 [N] 的 numpy 数组,表示每个框的置信度。
:param iou_threshold: IoU 阈值,决定是否去除一个框。
:return: 保留的边界框索引。
"""
# 对预测框按置信度排序
idxs = np.argsort(scores)[::-1] # 降序排序,返回索引
selected_boxes = []
while len(idxs) > 0:
# 选择置信度最高的框
current_idx = idxs[0]
selected_boxes.append(current_idx)
# 计算剩余框与当前框的 IoU
ious = compute_iou(boxes[current_idx], boxes[idxs[1:]])
# 去除与当前框 IoU 大于阈值的框
remaining_idx = np.where(ious <= iou_threshold)[0]
# 更新索引
idxs = idxs[remaining_idx + 1]
return selected_boxes
def compute_iou(box1, boxes):
"""
计算单个框与多个框的 IoU
:param box1: 单个框 [x1, y1, x2, y2]
:param boxes: 多个框的列表 [[x1, y1, x2, y2], ...]
:return: IoU 数组
"""
x1 = np.maximum(box1[0], boxes[:, 0])
y1 = np.maximum(box1[1], boxes[:, 1])
x2 = np.minimum(box1[2], boxes[:, 2])
y2 = np.minimum(box1[3], boxes[:, 3])
inter_area = np.maximum(0, x2 - x1) * np.maximum(0, y2 - y1)
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union_area = box1_area + boxes_area - inter_area
iou = inter_area / union_area
return iou
代码说明
nms:该函数实现了标准的非极大值抑制算法。它接收预测框boxes、对应的置信度scores以及 IoU 阈值iou_threshold。最终返回保留的框的索引。compute_iou:计算一个框与多个框之间的 IoU。
热门推荐
MBTI中的感觉与直觉:定义、应用、相互影响及相关维度
一文读懂成品油:你想知道的都在这里
张雪峰谈土木工程专业就业前景、考研方向、优势与劣势
温州最有名的14名创二代!太优秀
细胞的营养“奶酪”——L-酪氨酸
浅谈“幽门螺旋杆菌”
眼角膜发炎的治疗方法及注意事项
如何区分可变资本与不变资本、流动资本与固定资本?
如何轻松安装WordPress主题?探索详细的步骤指南
八字论日主用神:详解命理学中的核心概念
祛风通络,凉血消肿——络石藤
曹操在政治、军事、经济、文化方面有哪些举措与成就?
后世如何评价曹操?史料中是如何记载的?
护眼灯选购指南:从蓝光防护到品牌推荐的全面解析
技术提取祛斑是怎样的过程
如何举报学校的不当行为匿名
八字命理学中的喜用神:如何通过喜用神判断婚姻关系
最新研究:益生菌或可改善儿童专注力
古代将军们用过的五大名枪,都有什么来历?
如何判断海尔冰箱制冷剂泄漏及添加步骤(保持冰箱制冷效果的关键-检测和添加制冷剂)
熊果苷的功效与作用
如何制定项目沟通计划
如何理解美国储存黄金的运作机制?这种储存方式对投资者有何影响?
日本大阪大学留学申请条件及费用详解
如何使语文课堂有趣?激活课堂,让语文学习妙趣横生!
一份简明的78张塔罗牌带图解析(2025版)
空虚感的心理学解读及其应对策略
如何安全地删除Win10系统中的用户账户?
女人喝黄酒的好处
触摸屏抗指纹效果好吗