氮硝酸盐电催化还原合成氨的最新进展和挑战
氮硝酸盐电催化还原合成氨的最新进展和挑战
氨是化肥、炸药、化工生产等许多行业的主要贡献者和原料之一,然而常用的哈伯-博斯法制氨存在高耗能、高碳排放等缺点。相较之下,电催化合成氨是一种很有前途的合成氨策略,它可以利用太阳能、风能或水能驱动的电力直接将氮或硝酸盐转化为氨,不排放温室气体和有毒气。本文综述了近三年来电化学合成氨的最新进展,介绍了氮还原和硝酸根还原氨电合成的新机制,讨论了氨电合成的新途径和新技术,最后提出了该领域面临的挑战和未来的展望。
电化学合成氨的基本机理
氮还原反应(NRR)机理
根据催化表面N≡N键断裂和加氢顺序的不同,NRR反应机理可分为解离反应和缔合反应两种主要类型。解离途径将氮分子分解成原子,然后将它们附着在催化剂上并将其水解成2个NH3。如果三键在与催化剂结合后断裂,形成-NH3后称为缔合途径,可进一步分为缔合远端途径、缔合交替途径和酶促途径。
图1 在非均相催化剂上N2NRR的一般机理
硝酸根还原反应(NO3-RR)机理
如图2(a)所示,NO3- RR的机理可以通过两种途径进行:酸性环境下的电子转移还原(黑色箭头)和碱性环境下的原子氢还原(红色箭头)。酸性环境中的NO3- RR涉及8个电子转移,导致反应过程复杂,Niu等通过DFT计算揭示了五种可能的反应途径,如图2(b)所示,包括O-end、O-side、N-end和N-side到NH3的途径,以及NO-dimer到N2的途径。
图2 NO3- RR过程示意图
电化学合成氨的关键技术
锂介导电解法
Li-NRR的反应机制如图3(a)所示,Li+通过捕获一个电子被还原为活性Li,然后发生了两个相互竞争的反应:锂水解和锂氮化。为了提高Li-NRR的效率和选择性,McEnaney等设计了一种循环制氨工艺,如图3(b)所示,利用LiOH电解产生锂,然后锂与氮气反应生成Li3N, Li3N与水反应生成NH3;而Li等利用四氟硼酸锂电解质的诱导效应,在多孔铜阴极与溶剂之间增加了固体电解质界面(SEI),如图3(c)所示,抑制了不希望发生的析氢反应和电解质分解过程,从而增强了氮还原。此外,为了打破反应物传质限制、提高系统稳定性,Fu等设计了有效面积为25cm2的连续流式电池,如图3(d)所示。
图3 Li-NRR的机理、方法和装置
固体氧化物电解池技术
SOEC有两种类型,质子导电型(H-SOEC)和氧离子导电型(O-SOEC),如图4(a)和图4(b)所示,在H-SOEC中,氢气在阳极反应生成H+,H+被送至阴极与氮反应生成氨,而在O-SOEC中,氮在阴极与水反应生成氨和O2-,O2-送到阳极形成O2。对于通过SOEC进行的NRR,催化剂的选择性和活性是亟待解决的两个问题,因此学者们针对金属氧化物和钙钛矿氧化物展开了广泛研究。
图4 电化学NRR的两种SOEC模型
高活性催化剂设计
NO3-RR合成过程是一个速率较慢的8电子转移反应,因此开发高效的NO3- RR催化剂具有挑战性。学者们采用催化剂纳米化和单原子制备等方法,已制备出多种高活性的催化剂,如富氧空位的TiO2纳米管(TiO2−x,如图5(a)所示)、碳布上设计制作的NiCo2O4纳米线阵列(NiCo2O4/CC)、锚定在钛板的TiO2纳米带阵列上的Co纳米颗粒(Co@TiO2/TP)、锚定在氮掺杂石墨烯(HNG)的孔洞边缘位置的铁/铜双原子催化剂等(如图5(b)所示)。
先进电化学器件制造
在电化学装置连续运行过程中,阳极/阴极电解液的pH或离子组成的不相容是阻碍NO3- RR在最佳反应条件下长期稳定运行的主要挑战之一。为了克服上述问题,Xu等采用分步策略,构建了具有稳定的C- C共价互锁界面层(CIBM,如图5(c)所示)的双极膜,可作为阴极电解质和阳极电解质之间的隔膜。
图5 先进电化学装置的设计与制造
面临的挑战和发展方向
在大规模应用电化学合成氨技术取代Haber-Bosch工艺之前,仍有几个挑战需要克服:
- 电化学合成氨的法拉第效率和反应速率还比较低,仍需要创造性地设计和改进电化学电池
- 大多数用于氨合成的电化学电池都是液态电解质,容易导致氨分离变得困难,使用固态电化学电池是解决该问题的可行方案
- 目前在实验室规模的研究中,忽略了电化学合成氨的长期运行稳定性和耐久性,需要引起更多的关注
本文综述了近三年来电化学合成氨的最新进展,介绍了氮还原和硝酸根还原氨电合成的新机制,讨论了氨电合成的新途径和新技术,最后提出了该领域面临的挑战和未来的展望。
本文原文来自《Frontiers in Energy》,作者为清华大学于波教授团队。