概率论 - 常见分布(及其分布表)
创作时间:
作者:
@小白创作中心
概率论 - 常见分布(及其分布表)
引用
CSDN
1.
https://blog.csdn.net/weixin_46072771/article/details/105618461
概率论中的分布是统计学和数据分析的基础,本文将介绍常见的离散型分布、连续型分布以及一些特殊的分布。
离散型分布
1. 0-1分布
0-1分布是最简单的离散分布,实验只有两种可能的结果,成功或失败。设成功的概率为p,则失败的概率为1-p。
- 概率质量函数:$P(X = k) = p^k(1-p)^{1-k}$
- 数学期望:$E(X) = p$
- 方差:$Var(X) = p(1-p)$
2. 几何分布
几何分布描述的是在一系列独立的伯努利试验中,首次成功所需的试验次数。设每次试验成功的概率为p。
- 概率质量函数:$P(X = k) = (1-p)^{k-1}p$
- 数学期望:$E(X) = \frac{1}{p}$
- 方差:$Var(X) = \frac{1-p}{p^2}$
3. 二项分布
二项分布描述的是在n次独立的伯努利试验中,成功次数的概率分布。设每次试验成功的概率为p。
- 概率质量函数:$P(X = k) = C_n^k p^k(1-p)^{n-k}$
- 期望:$E(X) = np$
- 方差:$Var(X) = np(1-p)$
- 最可能值:
- 当$(n+1)p$不为整数时,二项概率$P{X=k}$在$k=[(n+1)p]$时达到最大值;
- 当$(n+1)p$为整数时,二项概率$P{X=k}$在$k=(n+1)p$和$k=(n+1)p-1$时达到最大值。
重点:
若满足二项分布$X \sim B(n, p)$,其中n足够大($n≥100$),且$np≤10$时,可以将其近似于泊松分布$X \sim P(np)$【$\lambda = np$】,然后在查表就可以了。
4. 泊松分布
泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。
- 记作:$X \sim P(\lambda)$
- 数学期望:$E(X) = \lambda$
- 方差:$Var(X) = \lambda$
泊松分布表:
5. 超几何分布
超几何分布描述的是在有限总体中进行不放回抽样时,抽到的指定类型个体数的概率分布。设总体中有N个元素,其中M个属于第1类,N-M个属于第2类,从中取出n个,在取出的n个中有X=k个属于第1类。
- 记作:$X \sim H(n,M,N)$
- 重点:
当N很大,n相对N很小时,可近似为二项分布$X \sim B(n, M/N)$。再从二项分布近似为泊松分布就可以查表了。
连续型分布
1. 均匀分布
均匀分布描述的是在某个区间内,每个值出现的概率都相等的情况。例如等车时间。
- 数学期望:$\frac{a + b}{2}$
- 方差:$\frac{(b - a)^2}{12}$
2. 指数分布
指数分布常用于描述事件发生的时间间隔,具有无记忆性。
- 数学期望:$\frac{1}{\lambda}$
- 方差:$\frac{1}{\lambda^2}$
无记忆性:
3. 正态分布与标准正态分布
正态分布是连续型分布中最重要的一种,其概率密度函数呈钟形曲线。
- 普通正态分布转化为标准正态分布:
- 标准正态分布查表:
特殊分布
1. 卡方分布
卡方分布常用于统计假设检验中,特别是在检验样本方差是否等于假设方差时。
- 查表(x:α值,y:n自由度)
2. t 分布
t分布用于小样本数据的统计推断,特别是在总体方差未知时。
- 查表:
- 传送门1:完整的 t分布表(推荐)
- 传送门2:分单双侧的 t分布
3. F 分布
F分布常用于方差分析(ANOVA)中,用于检验两个总体方差是否相等。
- 查表:
- 传送门:完整的 F分布表
热门推荐
主流 RTOS 实时操作系统介绍
煮花螺总咬到沙?避开这6个坑,鲜嫩弹牙不翻车!
刮到别人的车怎么办?赔偿金计算与保险理赔全攻略
古代大理寺的职能与影响,地位和作用是什么样的?
怎么知道阳台垛子是不是配重墙
Vue中替代for循环的三种方法
花螺怎样处理才干净?一步步教你快速搞定
芒果配茶,肠胃受得了吗?
酒精过敏的症状及表现如何缓解
如何达成项目合作目标
如何召开项目进度会
建设项目三员管理是什么
检查小儿足部健康的方法
关于高考户口政策?
大数据研究证实:多基因风险评分可有效分层乳腺癌筛查
东北五仙的传说与象征
什么材质隔音效果最好?隔音材料怎么选?
揭秘显卡性能真相:显存越大真的越好吗?别再被商家忽悠了
发债买股做套利,巴菲特追投“五大商社”,持股比例逼近10%
复盘1999:经济触底前的牛熊转换
湖北大学化学化工学院:推进化学学科研究生教育改革 培养跨学科卓越人才
2024年雨水节气日期及其不同地区的气候特点
隔音棉有用吗?隔音棉的特点有哪些?
电子邮件凭证保护诈骗:如何发现和避免诈骗
2025年澳洲留学新政全解读:签证费暴涨125%,名校招生名额腰斩
北京地铁运营线路图2025年最新版(图)
研究证实:冬天坚持吃苹果,5个月内身体或出现两大变化
磁轴键盘选购全攻略:优势、不足与推荐产品
没毕业可以交社保吗?是不是没用?
股份公司章程制定与创立大会召开的法律规范