问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

岛津原子力显微镜——KPFM在光催化中的应用

创作时间:
作者:
@小白创作中心

岛津原子力显微镜——KPFM在光催化中的应用

引用
1
来源
1.
http://www.sinospectroscopy.org.cn/readnews.php?nid=97117

二氧化钛(TiO2)是一种常见的光催化剂,但其光催化效率受到电子-空穴复合率高的限制。近年来,研究人员发现通过在TiO2表面负载金纳米颗粒(AuNP),可以有效提高光催化性能。本文介绍了一种利用岛津原子力显微镜的KPFM(开尔文探针力显微镜)功能,来观察和分析AuNP/TiO2复合材料在光催化过程中的电荷分布情况的研究方法。

二氧化钛(TiO2)是一种宽禁带N型半导体,其表面受到光的照射时,若光子的能量大于或等于其禁带宽度(波长低于400nm的紫外光),价带的电子将受到激发跃迁至导带,形成自由电子,同时带正电荷的空穴留在价带上,从而产生了电子-空穴对。电子和空穴分别发生氧化和还原反应,使反应体系中的原子基团被催化分解,完成光催化的功能。因此TiO2纳米颗粒有良好的光催化功能。但是因为TiO2纳米颗粒吸收截面非常小,所以光激发产生的电子与空穴复合率高,导致光催化效率降低。如何提高TiO2纳米颗粒对近紫外光的吸收截面是提升其光催化性能的一条重要途径。

通过研究发现,加入贵金属纳米颗粒可以提高电荷转移的效率,降低电子与空穴的复合率,从而提高其光催化性能。其可能的原因是贵金属纳米颗粒与光相互作用时表面产生等离子体共振,完成了能量传递,增加了光催化能力。

金纳米颗粒(AuNP)增强光催化是当前能源、环境领域的一个研究热点。AuNP和TiO2的复合材料的催化机理已被广泛研究,反应过程中对表面电荷的分布进行观察可以有效阐明催化过程。原子力显微镜的开尔文探针力显微镜(KPFM)功能是一种将开尔文定律应用于扫描探针显微镜(SPM)的分析技术,不仅可以测量样品的表面形状,还可以测量样品的表面电位分布。

因此,尝试在紫外光照射下的对AuNP和复合材料进行表面KPFM扫描,可表征样品表面上的光致电荷分布(电荷分离)。

利用生物素-链霉亲和素复合物可将AuNP有效结合到TiO2颗粒表面。设计实验,制备两种样品,一种是没有生物素-链霉亲和素复合物的对照样品,以及使用生物素-链霉亲和素复合物的样品,在照射紫外光及不照射紫外光的条件下,分别测量固定在TiO2上的AuNP的表面电位分布,以可视化光致电荷分布。

生物素-链霉亲和素复合物与AuNP作用示意图
AuNP与TiO2 复合材料表面电位分布测量图

岛津SPM-9700HT使用光照射单元通过光纤对样品表面进行紫外光照射

没有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图
有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图

从上面两组图可以看出,这两种样品,在紫外光照射时AuNP的相对电位都低于TiO2表面的相对电位。

没有生物素-链霉亲和素复合物(蓝色),有生物素-链霉亲和素复合物(红色)时AuNP对TiO2表面的相对电位统计对比

将两种样品在有紫外光照射和没有紫外光照射情况下的表面电位进行统计分析。白色框图柱表示没有紫外光照射,颜色柱表示有紫外光照射。误差条显示6-7个粒子的测量值的中值±IQR。当AuNP形成组装体时,在紫外光照射下AuNP与TiO2表面的相对电位显着降低。

本实验通过在紫外光照射下通过KPFM测量表面电位分布,实现了固定在TiO2上的AuNP杂化物的光致电荷分布的可视化。这表明使用SPM的KPFM 模式,辅助以光照射单元可以有效地观察光催化是表面的电荷分离情况。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号