中国科大双突破:最强量子关联+19自由度灵巧手
中国科大双突破:最强量子关联+19自由度灵巧手
中国科学技术大学近期在量子物理和机器人技术领域取得两项重大突破,展现了该校在前沿科技研究方面的实力。
量子关联研究:突破36年未解难题
在量子物理领域,中国科大郭光灿院士团队在《科学·进展》(Science Advances)发表重要研究成果。研究团队成功观测到目前最强的逻辑形式量子关联,这一发现有望为量子计算和量子通信技术的发展提供新的理论基础。
量子力学允许出现超越经典物理学的关联,其中逻辑形式的量子关联无需违背不等式,能够更明确地展示与经典关联的不同,吸引了广泛的关注。1989年,Greenberger, Horne 和Zeilinger (GHZ) 首次预言了态依赖的逻辑形式量子关联,揭示了量子力学和经典物理学在实验中四个条件概率组合的预言上出现确定性的矛盾,即著名的GHZ悖论。逻辑形式量子关联的强度与所使用的条件概率组合的数量有关,条件概率组合数越少,量子关联就越强。自GHZ结果发表36年以来,更强的逻辑形式量子关联一直未取得进展。
为了解决这一开放性问题,研究团队发展了适用于逻辑形式关联的图论方法,通过搜索图论常数,在37维空间中发现了仅使用三个条件概率组合的量子关联。研究进一步表明,条件概率组合的数量已无法进一步减少,证明了该结果就是逻辑形式量子关联的极限。
为了观察到高维空间中的量子关联,研究团队设计了一个基于直和空间编码和时间维度复用的可扩展光学体系,可以将高维空间中的制备-测量实验分解为多个低维空间中的实验。团队在该体系中以超过8个标准差的置信度,观测到了高维空间下逻辑形式量子关联。该研究将为寻找更强的其它形式量子关联提供重要线索,同时实验中所观测到的量子关联将在量子计算和量子通信领域发挥重要作用。
仿生灵巧手:为假肢患者带来新希望
在机器人技术领域,中国科大工程科学学院/人形机器人研究院张世武教授团队研发出一种具备19自由度的轻质仿生灵巧手,这一突破性成果发表在国际学术期刊《Nature Communications》上。
人手具备23个自由度,重量仅为人体重量约1/150,但运动功能占全身运动功能的54%,是体现人类以及人形机器人工作能力的关键部件。然而,现实中,包括人形机器人的灵巧手以及全球超过一千万名上肢截肢患者的假肢手应用面临挑战。传统假肢灵巧手通常使用电机驱动,功率密度低,难以在自由度与重量之间找到理想平衡:佩戴超过人手重量(0.4千克)的灵巧手会让患者感到严重不适,而自由度较低(通常少于10个)灵巧手仅能实现有限的抓握动作,远不及人手的灵活性。这些限制导致接近一半的假肢灵巧手被患者放弃使用。因此,兼顾高自由度灵巧运动和舒适佩戴的设计方法是假肢灵巧手领域的重要科学问题之一。
研究团队以高功重比形状记忆合金(SMA)为人工肌肉驱动,仿生设计了类肌腱传动系统放大SMA的驱动力同时减小传动阻力,基于类肌腱分离传动特征在手指及手腕内嵌入23组传感单元实现关节精确运动控制,并集成包含冷却模块的38组阵列式SMA驱动器,实现了假肢灵巧手的19主动自由度运动,如图1所示。得益于仿生设计方法和高度集成方法,所设计的假肢灵巧手仅重0.37千克,具备人手级别的灵巧操作能力,可完成诸如梳头、写字、握手、递名片和下棋等日常精细操作任务,实现了佩戴舒适性、高自由度和精确可控的兼顾。
通过与语音识别技术结合,假肢灵巧手具备简单、友好且低成本的人机交互能力,支持60种语言和20种方言,具备95%的识别准确率和毫秒级的响应时间,适于在截肢患者中普及。在临床测试中,一名60岁女性截肢患者仅用半天便熟练掌握该假肢灵巧手的使用,成功完成了多项标准假肢手功能评估实验中的代表性任务,包括南安普顿手功能评估程序(SHAP)和沃尔夫运动功能测试(WMFT)。值得一提的是,该假肢灵巧手还展现了操作剪刀、使用手机以及完成复杂的手语手势的能力,完美复现传统的33种人手抓握动作,还能够完成6种更高难度的新抓握动作,使用场景丰富(图2)。该假肢灵巧手具有极强的工程应用前景,可为人形机器人灵巧操作及高性能假肢手研究提供有效的解决方案。
这两项突破性成果不仅展示了中国科大在量子物理和机器人技术领域的科研实力,也为相关技术的未来发展开辟了新的方向。郭光灿院士团队的量子关联研究为量子计算和量子通信提供了新的理论基础,而张世武教授团队的仿生灵巧手则为假肢患者带来了新的希望,同时也为人形机器人的发展提供了新的解决方案。