问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读

创作时间:
作者:
@小白创作中心

向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读

引用
1
来源
1.
https://www.pianshen.com/article/22741914439/

向量运算是数学、物理学和工程学中的基础工具,广泛应用于各种科学和工程问题的解决中。其中,向量的点乘(内积)和叉乘(外积、向量积)是最基本的两种运算方式,它们不仅在理论上具有重要意义,在实际应用中也发挥着关键作用。本文将详细介绍这两种运算的概念、计算方法及其几何意义,帮助读者全面理解向量运算的核心内容。

向量是由n个实数组成的一个n行1列(n1)或一个1行n列(1n)的有序数组。

向量点乘(内积)

向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。

点乘公式

对于向量a和向量b:

要求一维向量a和向量b的行列数相同。

点乘几何意义

点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:

推导过程如下,首先看一下向量组成:

定义向量:

根据三角形余弦定理有:

根据关系c=a-b(a、b、c均为向量)有:

即:

向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:

根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:

  • a·b>0 方向基本相同,夹角在0°到90°之间
  • a·b=0 正交,相互垂直
  • a·b<0 方向基本相反,夹角在90°到180°之间

叉乘(外积、向量积)

两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。

叉乘公式

对于向量a和向量b:

其中:

根据i、j、k间关系,有:

叉乘几何意义

在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。

在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

在二维空间中,叉乘还有另外一个几何意义就是:aXb等于由向量a和向量b构成的平行四边形的面积。

矩阵叉乘的特殊说明

说是矩阵的叉乘,其实是说的是两个向量的叉乘,矩阵是不能叉乘的。cross(A,B)返回向量A和B的叉乘,其中A,B必须是3个元素的向量!

比如

a=[1,2,3],b=[4,5,6],

则cross(a,b)=[-3 6 -3].

它表示的意思是三维空间中的两个点A(1,2,3)和B(4,5,6),再加上原点O,则构成的两个向量OA,OB,则cross(a,b)就是垂直平面OAB的向量,它的模是三角形OAB面积的2倍。结合上面的例子,假若点C(-3,6,-3),则向量OC就是平面OAB的法向量,|OC|就是三角形OAB面积的2倍。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号