问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

解密GCN,手把手教你用PyTorch实现图卷积网络

创作时间:
作者:
@小白创作中心

解密GCN,手把手教你用PyTorch实现图卷积网络

引用
1
来源
1.
https://www.rongpm.com/column/gcn-pytorch-1r2y.html

图神经网络(GNNs)是一种深度学习模型,专门用于处理图形数据,例如社交网络、分子结构和交通系统。本文将详细介绍图卷积网络(GCN)的基本原理,并通过PyTorch框架实现其具体应用。

图神经网络(GNNs)概述

图神经网络(GNNs)是一种深度学习模型,专门用于处理图形数据,例如社交网络、分子结构和交通系统。GNNs通过节点间信息交换学习各自的位置和特性,捕捉图形中的结构和关系,并在众多领域显示出其优势。

图卷积网络(Graph Convolutional Networks)

图卷积网络(GCN)是一种由多层结构组成的神经网络,核心是图卷积层,类似于CNN中的卷积层。GCN通过处理图中的节点信息来捕捉结构特征。

推导GCN方程式

GCN的数学原理基于节点特征矩阵和邻接矩阵的运算。通过矩阵运算考虑节点自身特征并进行归一化处理,以应对不同数量的邻居节点。该过程涉及对称归一化,并引入权重矩阵和非线性激活函数以优化特征表示。

PyTorch 实现

在PyTorch框架中实现GCN涉及设置邻接矩阵、度矩阵和权重矩阵,并在前向传播中利用它们构建新的特征矩阵。代码示例展示了如何创建一个GCN层,处理输入特征矩阵,并通过前向传播得到结果。

import torch
import torch.nn as nn
import torch.nn.functional as F

class GCNLayer(nn.Module):
    def __init__(self, in_features, out_features):
        super(GCNLayer, self).__init__()
        self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
        self.reset_parameters()

    def reset_parameters(self):
        torch.nn.init.xavier_uniform_(self.weight)

    def forward(self, input, adj):
        support = torch.mm(input, self.weight)
        output = torch.spmm(adj, support)
        return output

class GCN(nn.Module):
    def __init__(self, nfeat, nhid, nclass, dropout):
        super(GCN, self).__init__()

        self.gc1 = GCNLayer(nfeat, nhid)
        self.gc2 = GCNLayer(nhid, nclass)
        self.dropout = dropout

    def forward(self, x, adj):
        x = F.relu(self.gc1(x, adj))
        x = F.dropout(x, self.dropout, training=self.training)
        x = self.gc2(x, adj)
        return F.log_softmax(x, dim=1)

推荐书单

《图神经网络基础、模型与应用实战》一书为读者提供关于图神经网络的详尽介绍,包括基础知识、模型和多领域应用实战,适合图神经网络的学习者和实践者。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号