坐标系中平行四边形面积与矩阵行列式的几何关系
坐标系中平行四边形面积与矩阵行列式的几何关系
定理
在坐标系中,由向量(a,b)和向量(c,d)组成平行四边形的面积等于矩阵
[
\begin{bmatrix}
a&b\
c&d
\end{bmatrix}
]
的行列式,即:
平行四边形的面积 =
[
\begin{vmatrix}
a&b\
c&d
\end{vmatrix}
= ad-bc
]
验证
上图中,S表示面积:
- (S_{\text{红4}} = cd)
- (S_{\text{绿5}} = ab)
- (S_{\text{橙6}} = ab)
- (S_{\text{黄7}} = cd)
得出:
- (S_{\text{绿5}}=S_{\text{橙6}})
- (S_{\text{红4}} = S_{\text{黄7}})
- (S_{\text{蓝8}} + S_{\text{绿5}} + S_{\text{红4}} = ad)
图中,(S_{\text{紫}} = S_{\text{紫1}} + S_{\text{紫2}} +S_{\text{紫3}} = bc)
现在看平行四边形的面积,如下:
[
S_{\text{平行四边形}} = S_{\text{蓝8}} + (S_{\text{橙6}} - S_{\text{紫2}}) + (S_{\text{黄7}} - S_{\text{紫1}}) - S_{\text{紫3}}
]
减去(S_{\text{紫3}}),是因为(S_{\text{紫3}})加了两次
[
\begin{aligned}
S_{\text{平行四边形}} & = S_{\text{蓝8}} + (S_{\text{橙6}} - S_{\text{紫2}}) + (S_{\text{黄7}} - S_{\text{紫1}}) - S_{\text{紫3}} \newline
& = S_{\text{蓝8}} + S_{\text{橙6}} + S_{\text{黄7}} - S_{\text{紫1}} - S_{\text{紫2}}-S_{\text{紫3}} \newline
& = (S_{\text{蓝8}} + S_{\text{绿5}} + S_{\text{红4}}) - (S_{\text{紫1}} +S_{\text{紫2}}+S_{\text{紫3}}) \newline
& = ad-bc
\end{aligned}
]