使用YOLOv5训练自己的数据集实现目标检测
创作时间:
作者:
@小白创作中心
使用YOLOv5训练自己的数据集实现目标检测
引用
CSDN
1.
https://blog.csdn.net/weixin_54186806/article/details/145634727
本文将详细介绍如何使用YOLOv5进行目标检测模型的训练。从资源下载、环境配置到模型训练和测试,每个步骤都配有详细的说明和代码示例。适合对目标检测感兴趣的读者,尤其是初学者。
0. YOLOv5的简单介绍
YOLOv5是一种实时目标检测算法,其核心工作原理包括:
网络架构:
- Backbone: 使用CSPDarknet进行特征提取
- Neck: 使用PANet进行特征融合
- Head: 用于预测目标的类别、位置和置信度
预测流程:
- 将输入图像分割成 SxS 网格
- 每个网格预测多个边界框
- 每个边界框包含:
- 中心点坐标(x,y)
- 宽高(w,h)
- 置信度分数
- 类别概率
YOLOv5的优势:
- 速度快: 实时检测能力强
- 精度高: 在各种数据集上表现优异
- 部署便捷: 支持多种推理框架
- 使用简单: 配置和训练流程清晰
- 代码开源: 社区支持度高
1. 下载YOLOv5资源
项目地址:https://github.com/ultralytics/yolov5/tree/v5.0
在GitHub中的项目ultralytics/yolov5中,有很多标签,如下图所示:
使用以下命令下载资源:
git clone https://github.com/ultralytics/yolov5.git
进入下载的YOLOv5目录,查看当前分支:
git branch
查看所有标签:
git tag
切换到v5.0标签:
git checkout v5.0
2. 训练数据集的介绍
下载后的文件结构如下:
打开data文件夹,以coco128.yaml为例:
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to /yolov5:
# /parent_folder
# /coco128
# /yolov5
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
train: ../coco128/images/train2017/ # 128 images
val: ../coco128/images/train2017/ # 128 images
nc: 80
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]
3. 如何配置文件
- 下载coco128数据集并解压,放在YOLOv5目录下
- 修改coco128.yaml文件,注释掉download并修改路径
4. 下载各种依赖和环境
创建conda虚拟环境:
conda create -n yolov5 python=3.8
conda activate yolov5
pip install -r requirements.txt
5. 训练YOLOv5模型
修改train.py中的超参数:
python train.py
如果遇到numpy版本问题,可以降级到1.22版本:
pip uninstall numpy
pip install numpy==1.22
或者使用conda安装:
conda install numpy==1.22
6. 测试YOLOv5模型
修改test.py中的超参数:
python test.py
7. 使用YOLOv5模型进行目标检测
修改detect.py中的超参数:
python detect.py
8. 训练自己的数据集
提供了一个关于奶牛行为识别的数据集,可以从百度网盘下载:
链接: https://pan.baidu.com/s/1Bc1zjrG49LfM_2JDfLB1vA?pwd=yfyf 提取码: yfyf
数据集文件结构如下:
配置cow_detect.yaml:
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to /yolov5:
# /parent_folder
# /coco128
# /yolov5
# download command/URL (optional)
#download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
train: cow_detect/images/train # train images (relative to 'path') 128 images
val: cow_detect/images/val # val images (relative to 'path') 128 images
nc: 2
names: [ 'lie', 'stand']
配置yolov5_cowdetect.yaml:
nc: 2
训练、测试和检测模型:
python train.py
python test.py
python detect.py
最终结果:
热门推荐
新生儿30天体检还是42天
一种多巴胺生产菌株及其构建方法与应用
肺结核潜伏期会传染吗
收藏备用!如何给自己、给父母选择合适的年度体检套餐?
怎么判断水温达到?汽车水温的正常范围是多少?
汽车水温表的详细解读与使用方法:保障驾驶安全的关键指南
文化中国行 | 且听鼓声震天地
模仿《安塞腰鼓》写场面
通知:在校硕博士涨薪!研究生重大变革,来了
Windows11如何调整鼠标灵敏度?
每天少吃一成超加工食品就能延寿!戒掉饮酒效果加成
基金业绩的评价指标有哪些?这些评价指标如何反映基金的表现和潜力?
2024年北京土地市场求变
脊针治疗混合型颈椎病的临床研究
《熊出没·重启未来》:科幻与环保的双重奏章——一次专业视角的深度剖析
青壮年要注意,有这些症状可能是心肌炎!
保密协议的常见类型有哪些
深入探讨新加坡商业保密协议的重要性与实施细则
动态 GPU 分配技术:原理、优势及未来趋势
雍正妃嫔华妃在历史上到底是什么样的?地位如何?
新书 | 路易斯·戴:《媒介传播伦理:案例与争论(第五版)》
媒介伦理在数字时代的重要性与挑战分析
部门职责撰写全攻略:这3个误区让80%的HR都踩坑了
医保钱包使用指南:确认使用、转账及支付就医购药费用
中小学生将手机带入校园,到底怎样管理?
一般和田玉手镯价格 一个和田玉镯子价位
千古奇文《横渠四句》,全文仅22字,却道尽了人生哲理与中国文人的千年担当
高效传输大文件的方法及工具
内向男人的魅力所在
均衡饮食:概念、重要性及实现指南