使用YOLOv5训练自己的数据集实现目标检测
创作时间:
作者:
@小白创作中心
使用YOLOv5训练自己的数据集实现目标检测
引用
CSDN
1.
https://blog.csdn.net/weixin_54186806/article/details/145634727
本文将详细介绍如何使用YOLOv5进行目标检测模型的训练。从资源下载、环境配置到模型训练和测试,每个步骤都配有详细的说明和代码示例。适合对目标检测感兴趣的读者,尤其是初学者。
0. YOLOv5的简单介绍
YOLOv5是一种实时目标检测算法,其核心工作原理包括:
网络架构:
- Backbone: 使用CSPDarknet进行特征提取
- Neck: 使用PANet进行特征融合
- Head: 用于预测目标的类别、位置和置信度
预测流程:
- 将输入图像分割成 SxS 网格
- 每个网格预测多个边界框
- 每个边界框包含:
- 中心点坐标(x,y)
- 宽高(w,h)
- 置信度分数
- 类别概率
YOLOv5的优势:
- 速度快: 实时检测能力强
- 精度高: 在各种数据集上表现优异
- 部署便捷: 支持多种推理框架
- 使用简单: 配置和训练流程清晰
- 代码开源: 社区支持度高
1. 下载YOLOv5资源
项目地址:https://github.com/ultralytics/yolov5/tree/v5.0
在GitHub中的项目ultralytics/yolov5中,有很多标签,如下图所示:
使用以下命令下载资源:
git clone https://github.com/ultralytics/yolov5.git
进入下载的YOLOv5目录,查看当前分支:
git branch
查看所有标签:
git tag
切换到v5.0标签:
git checkout v5.0
2. 训练数据集的介绍
下载后的文件结构如下:
打开data文件夹,以coco128.yaml为例:
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to /yolov5:
# /parent_folder
# /coco128
# /yolov5
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
train: ../coco128/images/train2017/ # 128 images
val: ../coco128/images/train2017/ # 128 images
nc: 80
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]
3. 如何配置文件
- 下载coco128数据集并解压,放在YOLOv5目录下
- 修改coco128.yaml文件,注释掉download并修改路径
4. 下载各种依赖和环境
创建conda虚拟环境:
conda create -n yolov5 python=3.8
conda activate yolov5
pip install -r requirements.txt
5. 训练YOLOv5模型
修改train.py中的超参数:
python train.py
如果遇到numpy版本问题,可以降级到1.22版本:
pip uninstall numpy
pip install numpy==1.22
或者使用conda安装:
conda install numpy==1.22
6. 测试YOLOv5模型
修改test.py中的超参数:
python test.py
7. 使用YOLOv5模型进行目标检测
修改detect.py中的超参数:
python detect.py
8. 训练自己的数据集
提供了一个关于奶牛行为识别的数据集,可以从百度网盘下载:
链接: https://pan.baidu.com/s/1Bc1zjrG49LfM_2JDfLB1vA?pwd=yfyf 提取码: yfyf
数据集文件结构如下:
配置cow_detect.yaml:
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to /yolov5:
# /parent_folder
# /coco128
# /yolov5
# download command/URL (optional)
#download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
train: cow_detect/images/train # train images (relative to 'path') 128 images
val: cow_detect/images/val # val images (relative to 'path') 128 images
nc: 2
names: [ 'lie', 'stand']
配置yolov5_cowdetect.yaml:
nc: 2
训练、测试和检测模型:
python train.py
python test.py
python detect.py
最终结果:
热门推荐
广州健康院等提出可预防寨卡病毒感染的单剂接种环状RNA疫苗策略
上海新恩堂:历史与信仰交织的文化地标
海外上市架构对中国企业发展的影响与分析
诸葛亮舌战群儒:历史真实性的探讨
克孜勒苏柯尔克孜自治州:历史渊源、民族文化与地域特色
罗伯罗夫斯基仓鼠:从选购到养护的全方位指南
身上长了很黑的小痣
学打太极、拧螺丝、盛土豆丝……走进机器人的"特训营"
揭秘三国时期魏国的“三曹”
详解全功能Type-C数据线选购指南:速率、充电、材质全方位解析
张学友:1000 场演唱会,见证华语音乐走向世界!
胸痛背后隐藏的疾病真相,你了解多少?
选购按摩仪的注意事项及对睡眠的影响
揭秘脂多糖致病机制:LBP与CD14的调控网络
50个耳熟能详的成语,原来都藏在古诗词里
常见的短视频类型有哪些?不同类型的短视频有何特点?
抖音热门歌曲深度解析,探索四块五的妞背后的深情故事与情感共鸣
南华大学从“独居石”中成功提取“肿瘤克星”高纯医用核素
《破阵子·四十年来家国》该如何理解?创作背景是什么?
施工图审查制度的发展方向及路径探析
跌打损伤的正确处理方法
面相鹰钩鼻好不好(面相鹰钩鼻的人什么特点)
火车一晚直达!这些地方好吃又好玩
宁夏历史上的地震
C语言嵌套循环详解:概念、实例与应用场景
秦穆公称霸西戎:西部扩张与春秋霸业
6部身体互换的奇幻电影,笑点密集太解压了
立秋的含义
核污水排放一周年,日本怎么又成"受害者"了?
内蒙古土左旗:麋鹿欢鸣生态美