基于光束整形的玻璃与聚合物的切割产生的微裂纹的方向性研究
基于光束整形的玻璃与聚合物的切割产生的微裂纹的方向性研究
激光切割技术在现代制造业中扮演着越来越重要的角色。其中,基于光束整形的激光切割技术因其高精度、高效率和高质量的切割效果而备受关注。本文将介绍一项关于玻璃与聚合物切割产生的微裂纹方向性研究,探讨如何通过调整激光脉冲参数实现高质量的切割效果。
实验光源配置
玻璃和聚合物的切割试验使用Fluence的Jasper X0飞秒光纤激光器,平均功率为20W,频率为200kHz。使用1030nm的激光波长,激光器产生的高斯光束M2<1.1,脉冲宽度在250fs-8ps的范围内可调。在猝发模式下,激光提供高达200uJ在100千赫这是在玻璃劈裂实验中使用的基本重复率。由于定位阶段加速度有限,脉冲拾取器减少了实验中的重复频率,并等于4kHz。对于聚合物切割,基础重复率为200千赫的应用。减少的脉冲重复频率为8千赫的情况下,聚合物切割振荡器的基本重复频率为20MHz,这确定了50ns的内脉冲串间隔。在光路中最后一个光学元件后测量激光功率。在脉冲猝发模式下,单个脉冲的能量被分解成所需的脉冲数,间隔50ns。这意味着当脉冲能量E=170μJ与N=4在猝发模式使用时,每个脉冲的能量为Ep=42.5μJ。另外,脉冲的峰值强度也是相当低的。
试验材料选择
实验采用两种材质的玻璃。厚度为1.1mm的硼硅酸盐玻璃(BK7)和厚度分别为2和4mm的钠钙玻璃。聚合物的切割使用的聚合物试验材料为:聚甲基丙烯酸甲酯(PMMA)为2.96mm,聚对苯二甲酸乙二醇酯(PET)为1.06mm。
玻璃切割对照实验
对于影响微裂纹的生成方向的因素:脉冲宽度和猝发模式下的脉冲数量作为变量进行对照试验。在脉冲个数N=3,总能量E=170μJ的情况下,测试不同脉冲宽度对微裂纹的生成影响。如图所示,当脉宽小于1ps时,微裂纹可以在预设的方向上近似连成一条线,有效的断裂长度可达20μm,在这种保证下,以100kHz的重复频率进行,切割速度最高可以实现2 m/s。当脉宽大于2ps时,微裂纹的分布方向呈现杂乱的多向分布。当控制脉冲宽度相同时,改变猝发模式下的脉冲数,发现随着N增大,微裂纹的方向分布的杂乱性也随之变强。可以得出需要在脉冲宽度与脉冲个数之间保持一个适当的平衡点,才可以保证峰值强度处于阈值之下。
下图是讨论脉宽和脉冲个数对多个微裂纹的相邻连接的效果的影响。当脉宽为2.6 ± 0.2 ps时,随着N值增大,微裂纹的侧向分布变少。相同的趋势也在控制N值相同,增大脉宽时,微裂纹的侧向分布也少。可见在某些激光参数条件下,脉冲参数的作用还是很明显。
还有一个参数会影响相邻的微裂纹的连接,即脉冲间隔,如图所示。从左至右逐渐降低脉冲间隔,可见微裂缝的侧向裂纹分布有所改善,成单一方向性的微裂纹,相邻的微裂纹也能较好的连接到一起。
下左图为脉宽为4.6ps,脉冲个数为3个的情况下,改变脉冲间隔,观察到的各种微裂纹的分布状况,右图为玻璃断裂面的裂纹3D图像合成。
聚合物切割实验
之前的工作中,对于报导用贝塞尔光束切割聚合物材料时几乎没有的。最大的挑战是获得均匀的长焦点,以此可以在激光扫描之后轻易地将材料断裂开。主要使用激光成丝光束整形模组。如图,在脉宽为0.25ps和4ps两种情况下,后者的微裂纹形成的断裂面就很平整。
鉴于不同的机械断裂机制,加工曲线轨迹时的聚合物切割表现得很好。需要的脉冲间隔低于切割玻璃时的,尽管不需要猝发模式,但是也需要较高的脉冲重复频率,大概200kHz,切割速度可以和玻璃切割相当。
光路配置
DeepCleave模块(Holo/or)用于实验,它产生18μm的焦点直径(1/e2)和1mm的焦点长度(在空气中)。模块的工作距离为7.4mm。通过扩束器后,直径6mm的激光入射到DOE的前表面。在激光器和样品之间没有使用其他元件。
定位扫描系统
样品固定在XY平移工作台,定位精度为±1μm。光学元件安装在垂直轴上,具有相同的定位精度。系统中垂直面和水平面的正交性保持在25μrad以下。这些轴都配备了光学编码器,并安装在沉重的花岗岩基座上。实验中,根据减小的脉冲重复频率,将扫描速度降低到30mm/s。
结论
使用单个激光源和简单实验配置可以实现不同透明材料的切割,由于脉冲宽度的调整和50ns的灵活的脉冲猝发模式,有效地对微裂纹的生成进行了设计。通过相邻微裂纹的互相连接,实现了玻璃的单一方向的切割,切割速度可达750 mm/s。此外,沿弯曲轨迹切割聚合物实现了与玻璃切割过程相当的速度。在这里,使用单一250fs脉冲是获得材料分离的关键。对于这两种材料,均展现了高切割速度超过700mm/s的材料厚度可达11mm的单通断裂的可能性。