问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

YOLOV8模型架构轻量化:极致降低参数量

创作时间:
作者:
@小白创作中心

YOLOV8模型架构轻量化:极致降低参数量

引用
1
来源
1.
https://cloud.tencent.com/developer/article/2423064

模型轻量化加速是深度学习领域的重要研究方向,旨在减小模型的体积和计算复杂度,从而提高在资源受限设备上的运行效率。本文将从模型结构设计的角度,以YOLOV8为例,探讨如何在保持模型性能稳定不变的前提下,实现参数量的极致压缩。

一、设计思路

从模型结构看,YOLOV8主要由两个大的模块构成:backbone和head模块。因此,降低参数量可以从这两个模块入手。

二、backbone模块轻量化参数

  1. CSPPC替换c2f卷积块

    论文地址:https://arxiv.org/pdf/2303.03667.pdf

    如上图所示,其中利用了PConv模块大量降低参数量。PConv(部分卷积)的基本原理是利用特征图的冗余,从而减少计算和内存访问。具体来说,PConv 只在输入通道的一部分上应用常规卷积进行空间特征提取,而保留剩余通道不变。这种设计的优势在于:

  • 减少计算复杂度:PConv 通过在较少的通道上进行计算,降低了浮点操作(FLOPs)的数量。例如,如果部分率设置为 1/4,则PConv的计算量只有常规卷积的 1/16.
  • 降低内存访问:与常规卷积相比,PConv减少了内存访问量,这对于输入输出(/0)受限的设备尤其有益
  • 保持特征信息流:尽管只对输入通道的一部分进行计算,但保留的通道在后续的逐点卷积(PWConv)层中仍然有用,允许特征信息在所有通道中流动
  1. Down_wt替换backbone下采样模块

    上图是ADown,其是在202402021最新发布的yolov9模型结构中提出的

检测头轻量化参数

论文地址:https://arxiv.org/pdf/2306.15988.pdf

主要改进机制:

  1. 底层特征融合: AFPN通过引入底层特征的逐步融合,首先融合底层特征,接着深层特征,最后整合顶层特征。这种层级融合的方式有助于更好地利用不同层次的语义信息,提高检测性能。
  2. 自适应空间融合;引入自适应空间融合机制(ASFF),在多级特征融合过程中引入变化的空间权重,加强关键级别的重要性,同时抑制来自不同对象的矛盾信息的影响。这有助于提高检测性能,尤其在处理矛盾信息时更为有效。
  3. 底层特征对齐: AFPN采用渐近融合的思想,使得不同层次的特征在融合过程中逐渐接近,减小它们之间的语义差距。通过底层特征的逐步整合,提高了特征融合的效果,使得模型更能理解和利用不同层次的信息。

个人总结:AFPN的灵感就像是搭积木一样,它不是一下子把所有的积木都放到一起,而是逐步地将不同层次的积木慢慢整合在一起。这样一来,我们可以更好地理解和利用每一层次的积木,从而构建一个更牢固的目标检测系统。同时,引入了一种智能的机制,能够根据不同情况调整注意力,更好地处理矛盾信息。

模型结构轻量化参数对比

原yolov8参数:3011043

轻量化后参数:1436977

通过以上模块的替换使得模型参数降低至原来的一半不到,且精度不变,这是通过剪枝、蒸馏都没办到的

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号