问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

量子力学的路径积分和退相干诠释

创作时间:
作者:
@小白创作中心

量子力学的路径积分和退相干诠释

引用
1
来源
1.
https://bbs.pinggu.org/jg/kaoyankaobo_kaoyan_6795163_1.html

量子力学作为20世纪最重要的科学发现之一,其理论体系复杂且深奥。本文将带你深入了解量子力学中的路径积分和退相干诠释,通过对比哥本哈根诠释,探讨量子力学中的一些核心概念,如波粒二象性、坍缩、叠加态等,并通过双缝实验等经典实验来验证这些理论。

与相对论一出现就用颠覆静态时空观念给人巨大震撼不同,量子力学第一次出现时只是假设能量不连续,好像对人们并没有什么冲击。但是随着时间推移,量子力学给人们带来的冲击越来越大,远远超过了相对论,连爱因斯坦都无法接受。

物理学的精髓是做出预测,只要能给出公式做精确计算,只要能自圆其说,所有解释就都是完全等价的。量子力学的正统诠释是二战前出现的哥本哈根诠释,引入了波粒二象性、坍缩、叠加态等一系列让人三观崩溃的概念,路径积分和以路径积分为基础的退相干诠释出现在二战后,这个诠释向经典物理做了一定程度的回归,根据这个诠释,我们可以扔掉难以理解的波粒二象性,回到熟悉的粒子世界,粒子,也就是可以被当做质点处理的物体。当然,质量可以为零,比如光子。

颠覆惯性定律

按照哥本哈根正统诠释,正如相对论中不只光具有光速一样,在量子力学中,也不是只有光具有波粒二象性,而是所有的物体都具有波粒二象性。而路径积分抛开波粒二象性概念的关键是:颠覆惯性定律。

惯性定律:在不受外力的情况下,物体要么保持静止,要么保持匀速直线运动。怎么颠覆呢?惯性定律说的都反对就行了:在不受外力的情况下,物体既不保持静止,又不做匀速直线运动。否定容易,还得给出新结论,新结论是:在不受外力的情况下,物体做一种非常混乱的运动。不过,混乱确实够混乱,但还是有规律的,这个规律就是波函数。完整表述:在不受外力的情况下,物体按照波函数运动。

物体按照波函数运动是什么意思?先看典型的经典波动——水波,经典水波运动,把水的最小不可分单位当做质点处理,这些质点按照经典波动方程运动起来就形成了水波。要理解量子力学的波动,只要看看和水波之间的区别就行。

第一点区别:水波需要波源提供能量输入,一旦停止能量输入,波动就会逐渐停止。而量子力学里面的波动不需要波源,不需要能量输入,是这些质点自身的属性。

运动的物体都有动量,也就是能量,那么质点自身在永不停歇的波动,岂不是有源源不断的能量?岂不是可以制造永动机了?原则上说,量子力学里面的质点确实拥有源源不断的能量,称为能级。但是说到永动机,从目前的理论上来说,没有办法持续提取这份能量。

第二点区别:水波的边界是明确的,局限在有限范围内。而量子力学的波动,无论是薛定谔方程还是狄拉克方程,都没有明确边界,理论上充满整个宇宙。

第三点区别:在水波运动里面,单个质点的运动遵守牛顿力学定律,波动运动是大量按照牛顿力学运动的质点,累加后表现出来的现象。而量子力学里面,单个质点也不遵守牛顿力学定律,也在做波动运动。给定位置,从单粒子的波函数可以解出这个位置的一个数值,这个值的含义是:质点出现在这个位置的概率。

单质点波动方程的解的意义是概率,这一点非常重要,值得花费一个小节来说明。先说一下“质点”:量子力学把基本粒子看做不占体积的物体,也就是基本粒子可以看做质点。

概率、坍缩、观测、叠加态

按照哥本哈根正统诠释,在不被观测时,粒子是不存在的,只有一个弥散在整个宇宙空间的波,或者有人喜欢说是场,总之是一个不能被处理成质点的东西。一旦被观测,也就是想要获取它的位置、动量数据,它就变成了能被处理成质点的粒子,从波或者说场变成粒子的过程叫做坍缩。当然,在物体保持波或者场的状态时,它在空间各点的分布并不均匀,它是按照波动方程解出的概率值来分布的。等价的说法是,它的位置处于空间各点的叠加态。

物体可以从波或者说场瞬变为可以被处理成质点的粒子,而触发条件是观测!真玄乎啊,还是看看路径积分诠释吧。按照路径积分诠释,简单地说,粒子始终是粒子,被观测前,它在整个宇宙空间急速运动。整个宇宙中间极速运动?岂不是超光速了?后面再讨论超光速的问题,这里先接着说物体在整个宇宙空间急速运动,当然是按照波函数运动的,也就是物体在运动过程中,经过空间各点的次数是不同的,波动方程求出的概率,就是反映物体路过指定位置次数多少的度量。这个概率是由频率得出来的。正统诠释里面玄玄乎乎的坍缩、叠加态,都用不着了。本来就是实在的质点粒子,观测时它当然仍然是粒子形态了。

继续说起来,就要说到测不准和不确定性的争辩了。在继续之前,先看看双缝实验,看看观测是怎么被牵扯进来的。

双缝实验

很多文章对双缝实验说得令人费解,是因为没有从单缝说起。双缝实验最初是用光做的,后来改用有质量的粒子做,首先用的是电子,之后发展到各种各样的粒子,甚至用了质量、体积都很大的分子,都能得出同样的实验结果。这里用电子来描述,如图所示,经典物体过单缝,波会衍射,粒子走直线,表现截然不同:

根据经典波动和经典粒子过单缝的表现来预测,如果电子是波,那么在单缝后面的检测板上应该检测到明暗相间的条纹。如果电子是粒子,检测板上应该检测到一条亮带,中间最亮,向两边逐渐变暗,直到消失。实验检测到的电子过单缝是什么表现呢?一条亮带,是经典粒子的表现。

经典物体过双缝仍然有截然不同的表现:

根据经典波动和经典粒子过双缝的表现来预测,跟单缝类似,如果电子是波,那么检测板上应该检测到明暗相间的条纹。如果电子是粒子,那么检测板上应该检测到两条亮带,中间最亮,向两边逐渐变暗,直到消失。实验检测到的电子过双缝是什么表现呢?是明暗相间的条纹,这是经典波动的表现。

这就是波粒二象性的

双缝后的检测装置被设计为电子必须走直线才能被检测到,之前的实验结果已经清楚地表明电子过双缝应该发生衍射,那么电子应该可以绕过检测装置,检测板上仍然应该出现干涉条纹,当然会发生一点变化。然而这次的实验结果是,检测装置可以检测到所有电子,而看不到干涉条纹!检测装置安装在缝隙后面,电子到达检测装置时已经通过了双缝,按理说不影响电子的行为,也就是电子应该仍然表现为波,先衍射再干涉。然而事实却是检测装置居然影响到了电子。这就是哥本哈根正统诠释引入“观测”这个概念的原因。由于做了观测,波坍缩为粒子了。

测不准和不确定性

不确定性原理,有人喜欢说是测不准原理,连有些教材都说成是测不准原理。两者的区别很清楚,不确定性是说在测量前,不存在确定的粒子动量、位置。测不准原理是说在测量前粒子的动量、位置是确定的,只是没办法测量出来。很明显,测不准更符合经典物理。那么究竟是不确定还是测不准呢?

以电子双缝实验为例,根据哥本哈根正统诠释,在被观测前,没发生坍缩的时候,电子保持波的状态,这种状态连粒子都不存在,遑论确定的粒子位置和动量,所以是不确定,不是测不准。只有在遇到检测装置的时候,波才坍缩为粒子,生成位置和动量这两个信息。

再来看路径积分诠释。在路径积分诠释里面,粒子始终是粒子,但是由于粒子在按照波函数永不停歇地运动,我们只能得到粒子出现在各个位置的概率,不能百分百得出粒子下一刻将会运动到哪里,也就没办法得到物体精确的运动速度,更无从谈起动量了。为什么加装检测装置后,电子就走直线了呢?因为根据波函数计算,电子进入检测装置这个概率接近一。这个描述,看起来似乎更像是测不准,而不是不确定。

用猜骰子来举例,用扣碗把量子态的骰子扣到桌子上让你猜点数。根据正统诠释,在你打开扣碗看到骰子的点数之前,骰子并不是一个实在的骰子,而是一个波。连骰子都不存在,当然谈不上点数了。只有在你看到骰子的一瞬间,骰子才变成骰子,显示出它的点数。

根据路径积分诠释,骰子还是骰子,只不过这个骰子在按照波函数急速运动,急速运动中的骰子自然是没有确定的点数的,观测相当于给骰子拍一个快照,可以得到骰子在观测瞬间的点数。从这例子来说,骰子在每个瞬间都是有确定的点数的,只是测不准。

不过,还有个骰子例子没办法体现出来的重要的一点,粒子的位置和动量这两个信息之间是不对易的,没办法在同时得出精确结果。大概可以理解为获取粒子位置和动量总有个先后顺序,每一个获取动作都会改变这个粒子的状态,所以先获取位置还是先获取动量,得到的两个信息是不一样的。这个不对易关系是哥本哈根正统诠释和路径积分诠释的共同点。这一层意思,嗯还是更像测不准,不像不确定。好,继续看下一节。

从薛定谔方程到狄拉克方程

波函数经历了从薛定谔方程到狄拉克方程的发展过程,这两个方程的区别是狄拉克方程引入了洛伦兹变换,这一点区别决定了薛定谔方程是非相对论的,或者说不含时的,而狄拉克方程是相对论的,或者说是含时的。什么叫含时?就是包含了时间这个因素,薛定谔方程是基于三维空间,狄拉克方程基于四维时空。

包含了时间,或者说引入相对论,就又可以引出一些新结论了。前面说到,粒子波动运动的范围是整个宇宙,换句话说,甚至有概率瞬间跨越上百亿光年,严重超光速啊!相对论的公式都是基于有质量物体无法达到光速得出来的,现在这些粒子超光速了,代入相对论的公式能得到什么结果呢?通常的结果是:时间、空间变成了虚数。也有物理学家加入一些其他条件,可以借助超光速得出负数时空。虚数、负数的时空,代表了什么物理含义?

基本粒子的距离可以无限小,使得粒子相互间的作用力无穷大。其中电磁力、强力和弱力的无穷大可以通过重整化技巧消除掉,但是引力却是特殊的,引力来自时空弯曲,而重整化要求平直时空,所以无法用重整化技巧消除掉引力的无穷大。超弦理论通过引入高维空间解决了这个问题,不过由于超弦理论迄今还没有被实验证实,我们这里先不管超弦,仍然在量子力学的范围内讨论:无穷大的引力会引起什么?把无穷大的引力代入广义相对论方程,得到了跟超光速一样的东西:虚数和负数的时空,它们的物理含义被解释为黑洞、虫洞、时间倒流等。基本粒子制造的黑洞虫洞,当然是跟基本粒子量级的微型黑洞、虫洞,只允许基本粒子通过,只有基本粒子的时间能倒流。

回头看看粒子超光速引起的虚数和负数时空,既然都是虚数和负数时空,那应该是一样的物理含义,也就是黑洞、虫洞、时间倒流。其实这些东西归根结底都是同一个效果:使基本粒子能在时空中跳跃。好我们就抛开这些中间概念,直接说引入相对论后,基本粒子获得了时空跳跃能力。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号