【梯度下降】用计算思维解析梯度下降
创作时间:
作者:
@小白创作中心
【梯度下降】用计算思维解析梯度下降
引用
CSDN
1.
https://blog.csdn.net/qq_33985931/article/details/145971452
前言
由计算思维可知,解决问题的策略可从问题拆解、模式趋势的识别、模式归纳与抽象、算法设计这几个部分着手。
分解与结构
首先,梯度下降算法的核心问题是优化目标函数,即找到使目标函数最小化的参数值。以二维图为例:
要解决的核心问题就是P点走向min点,也就是全局最优点的过程,而梯度下降就是其中寻找最优解的方法之一。
梯度下降的主要问题可以被拆解为
- 如何计算目标函数的梯度?
- 如何根据梯度更新参数?
- 如何确保算法收敛到全局或局部最优解?
模式识别
在优化问题中,梯度下降算法识别了以下模式和趋势:
- 梯度方向:目标函数的梯度方向是函数值上升最快的方向,因此负梯度方向是函数值下降最快的方向。
- 局部最优与全局最优:目标函数可能存在多个局部最优解,梯度下降通常只能找到局部最优解(除非目标函数是凸函数)。
- 学习率的影响:学习率决定了参数更新的步长,过大会导致震荡,过小会导致收敛缓慢。
- 数据规模的影响:批量梯度下降(BGD)适合小规模数据,随机梯度下降(SGD)和小批量梯度下降(MBGD)适合大规模数据。
模式归纳与抽象
通过总结我们可以得出梯度下降的最终的核心思想为:
- 迭代优化:通过多次迭代逐步逼近最优解。
- 梯度信息:利用目标函数的梯度信息指导参数更新。
- 收敛情况:尽量收敛到全局最优。
- 下降方式:选用下降的方式,
算法设计
SGD(随机梯度下降)
设计的思想为
- 每次迭代随机选择一个样本计算梯度。
- 更新参数时只使用当前样本的梯度信息。
因为参数更新的步长(前进的距离)不可控,波动较大,导致没有完全的收敛到最优解。
优点是计算速度快,适合大规模数据;缺点是梯度更新方向波动较大,收敛不稳定。
用代码了解这个思想可能是最直观的,主要思想就是随机挑一个样本计算梯度然后再下降。
import numpy as np
def sgd(X, y, learning_rate=0.01, n_iters=100):
n_samples, n_features = X.shape
theta = np.zeros(n_features)
losses = []
for i in range(n_iters):
for j in range(n_samples):
# 随机选择一个样本
idx = np.random.randint(0, n_samples)
X_i = X[idx:idx+1]
y_i = y[idx:idx+1]
# 计算梯度
gradient = X_i.T.dot(X_i.dot(theta) - y_i)
# 更新参数
theta -= learning_rate * gradient
# 计算损失
loss = np.mean((X.dot(theta) - y) ** 2)
losses.append(loss)
return theta, losses
目前也有很多改善的SGD,本文不做介绍。
BGD(批量梯度下降)
设计思想
- 每次迭代使用整个训练集计算梯度。
- 更新参数时使用所有样本的梯度信息。
优点是梯度更新方向稳定,收敛路径明确;缺点是计算量大,内存消耗高,不适合大规模数据。
import numpy as np
def bgd(X, y, learning_rate=0.01, n_iters=100):
n_samples, n_features = X.shape
theta = np.zeros(n_features)
losses = []
for i in range(n_iters):
# 计算梯度
gradient = X.T.dot(X.dot(theta) - y) / n_samples
# 更新参数
theta -= learning_rate * gradient
# 计算损失
loss = np.mean((X.dot(theta) - y) ** 2)
losses.append(loss)
return theta, losses
MBGD(小批量梯度下降)
- 每次迭代使用一个小批量样本(mini-batch)计算梯度。
- 更新参数时使用当前小批量样本的梯度信息。
优点是平衡了BGD的稳定性和SGD的速度,适合大规模数据;缺点是需要调整批量大小。
import numpy as np
def mbgd(X, y, learning_rate=0.01, n_iters=100, batch_size=32):
n_samples, n_features = X.shape
theta = np.zeros(n_features)
losses = []
for i in range(n_iters):
# 随机选择一个小批量样本
indices = np.random.choice(n_samples, batch_size, replace=False)
X_batch = X[indices]
y_batch = y[indices]
# 计算梯度
gradient = X_batch.T.dot(X_batch.dot(theta) - y_batch) / batch_size
# 更新参数
theta -= learning_rate * gradient
# 计算损失
loss = np.mean((X.dot(theta) - y) ** 2)
losses.append(loss)
return theta, losses
后言
其他还有二阶优化方法、动量法与自适应学习率方法、启发式优化算法这里不做介绍后续有空做做,主要是个人笔记若有错误的地方也请谅解。
参考:《计算与人工智能概论》
下降协议在存在的噪声中迭代,寻找真实最小值的影子,然而Wired低语:'梯度是谎言,最优解永远在相位之外。
热门推荐
智慧服务区建设情况及发力方向
帮助孩子建立积极的自我形象,培养自尊与自信
刘德华的影响力已经过去三十年,至今仍经久不衰
掌握Photoshop模糊边缘技巧,提升图像艺术感与专业度
钢材百科:20CrMo钢材成分性能详情、20CrMo切割加工定尺
20#钢板参数指标介绍、20#标准用途解析、20#特性优势概述
一旦爆发核战,仅有10分钟逃生时间
为什么医生建议“停药3个月”才能怀孕?
燕郊9分钟直达北京!跨省地铁引关注
从问题到课题:教师教育科研能力提升路径
团队名字如何取上档次
五代风华:彩绸般的乱世叙事
一岁宝宝营养餐食谱大全及做法
加油站油品质量如何保障?一文读懂选油指南
团队同事如何称呼
阿勒泰追极光,年轻人又省了三四万
PUBG罗技鼠标宏秘籍12条:立即提升游戏体验!
考研复习中的休息与放松:保持高效学习的秘诀
孙笑川是什么梗啊?
北京师范大学2025年招生简章(含招生计划、录取分数线)
电脑桌选购指南:从长度、宽度到高度,如何挑选最适合你的办公桌?
前沿思考:研究哲学的革新与社会实践的结合
三星国行和港版有区别吗?
辛巳日柱命理特征与命运解析
开关电源自动测试系统短路保护原理及测试方法
如何分析黄金价格的趋势特征?这种特征对短期投资有何启示?
为什么千禧年TVB警匪剧能成为一代人经典回忆?
被誉为“最后的江南秘境”,浙江松阳县藏不住了
股票的内在价值
六款羊肉串秘制撒料配方及制作公式领悟透,你就是烧烤扛把子