如何理解偏导数与全微分(图文版)
创作时间:
作者:
@小白创作中心
如何理解偏导数与全微分(图文版)
引用
1
来源
1.
https://www.bilibili.com/read/cv35736332/
微积分是现代科学的基石之一,它帮助我们理解自然界中的变化规律。其中,偏导数与全微分是微积分中的核心概念,它们不仅在数学理论中占据重要地位,还在物理学、工程学、经济学等多个领域有着广泛的应用。本文将通过图文结合的方式,深入浅出地讲解这些抽象的数学概念,帮助读者建立直观的理解。
线性近似是微积分的核心思想,在《马同学图解微积分(上)》中这点体现为,可通过某直线来近似某曲线在
点及其附近的图像,该直线称为该曲线在
点的微分,或称为该曲线在
点的切线,如下图所示。
某曲线在
点的微分,指可近似该曲线在
点及其附近图像的直线
同样的,可通过某平面来近似某曲面在
点及其附近的图像,该平面称为该曲面在
点的微分,也称为该曲面在
点的全微分,或称为该曲面在
点的切平面,如下图所示。
某曲面在
点的微分,指可近似该曲面在
点及其附近图像的平面
从上面的举例可看出,“微分”在数学中指代的就是线性近似中的“线性”,具体如下所示(还有很多种微分,比如在《马同学图解微积分(上)》中学习过的弧微分、面积微分、体积微分等,也是类似的):
在后面的讲解中如果必要,会使用“曲线的微分”、“曲面的微分”进行区分,也会视情况使用“微分(切线)”以及“微分(切平面)”。
本课和下一课会介绍两种寻找某曲面在
点的微分的方法,先来看看第一种的思路。
1 寻找曲面微分的思路
显然,有无数条曲线包含在某曲面在
点及其附近图像中,比如下图绘出的两条红色曲线。
如果能近似某曲面在
点及其附近图像的平面存在,即某曲面在
点的微分存在,此时称在
点可微分,那么:
- 该曲面微分必可近似曲面所包含的曲线,如下图所示,其中蓝色平面即该曲面微分
- 上图中的曲线的微分必包含在该曲面微分中,如下图所示,其中黑色直线就是这些曲线的微分
我们知道两根不重合的相交直线可以决定一个平面,结合上面的分析,所以接下来的事情是: - 找到某曲面上方便计算的两条曲线
- 求出这两条曲线的微分
- 通过这两个微分计算出我们要寻找的平面,即某曲面在 点的微分
接下来的两节就会逐一完成上面的三件事情。
2 偏微分
本节会完成两件事情,找到某曲面上方便计算的两条曲线,以及求出这两条曲线的微分。
这两根曲线在
点的微分,即下图中的两根黑色直线,显然是不重合的。在数学中,它们分别被称为曲面
在
点
,及曲面
在
点
,或笼统地称为曲面
在
点的偏微分(Partial differential)。
3 偏导数
接着的任务就是求出上述的偏微分,这需要把这两条空间曲线用代数表示出来。以其中位于曲面上、过
点、平行于
轴的空间曲线为例,该空间曲线可以看作平面
与曲面
的交线,如下图所示。根据空间曲线的一般方程,所以该空间曲线的方程为
。
该空间曲线的微分,即曲面
在
点对
的偏微分,也在平面
上,如下图所示。
上述空间曲线可看作xOz 面上的平面曲线
要求出
在
点的微分,自然需要先求出
在
点的导数
。根据单变量函数导数的定义,所以有:
在多元函数的微积分中,上述导数也称为偏导数。其具体定义如下:
4 偏微分的求解
有了偏导数后,结合上单变量函数微分的定义,就可得平面曲线
在
点的微分为
,这是在
点建立的
坐标系中过原点的直线,如下图所示(还有不清楚的,可以查看《马同学图解微积分(上)》中的讲解)。
05:24
什么是微分|马同学图解微积分
5.2万观看 89弹幕
若在空间中的
点建立
坐标系,如下图所示。
将
变换到
坐标系下,空间曲线
在
点的微分,也就是曲面
在
点对
的偏微分,这是在
平面(即
平面)上的直线,如下图所示。
5 全微分
本节会完成最后一件事情,根据两个微分求出曲面
在
点的微分,或者说求出曲面
在
点的全微分。
和
位于曲面
在
点的全微分上,其叉积
是全微分的法向量,如下图所示。
根据叉积的定义,可得:
知道了曲面
在
点的全微分的法向量
,又该全微分会过
坐标系的
点,所以根据平面的点法式方程,可得全微分
的方程为:
6 小结
至此,我们求出了曲面的线性近似,也就是某曲面在
点的全微分。但涉及到
以及
这些坐标系,所以代数看上去特别复杂,这里特别总结如下:
热门推荐
创作运用的修辞手法
楼梯踏步尺寸多少合适?楼梯踏步设计要点全解析
亲家之间怎么称呼比较得体
成都科幻产业再添新翼:三体四维空间引领科幻+文创新风尚
暴饮暴食后的补救方法
研究发现:和狗狗互动不仅可以缓解压力,还会变聪明
怎么健康地吃成瘦子?快来开启肥胖人群的药膳调养之旅!(第二站)
胃食管反流病的病因、治疗及检查方法全解析
不忘初心,方得始终——如何在变革时代坚守信念
汽车保险退保全攻略:流程、材料与注意事项详解
张雪峰谈女生报军校:女生最吃香的五所军校推荐(含录取分数)
沃伊尼奇手稿:揭开历史上最神秘图书的面纱
电脑音频设置:打造极致音乐体验的秘诀
如何将 AI 模型的训练时间缩短
浅论油炸食品的危害及控制策略
数智新教育系列第20篇 | 指向高质量课堂的新型教与学模式构建路径
《斗破苍穹》129集删除萧潇片段:剧情魔改引发的多重考量
韩女皮肤管理项目全攻略:从专科护理到日常保养,教你如何拥有水嫩肌肤!
吃甜食容易长青春痘!营养师告诉你为什么?
基督徒可以离婚吗?
“爸爸”还是“宝贝”?称呼背后的情感密码与尊重之道
500万份自由职业数据揭示:这些工作最易被AI取代
蚂蚁集团的最新股权架构
斯诺克英锦赛正赛32强诞生,中国军团占8席,32进16强对阵出炉!
道家与道教的区别与联系:哲学与宗教的交融
宁夏西瓜:沙漠中的甘甜传奇
越简约、越高级!优雅有质感的“墨绿色”穿搭,时髦又耐看
古代女子的爱情:被束缚的渴望
冬天装修完千万不要直接开窗通风,不然你后悔都来不及
湖北GDP突破6万亿!背后是谁在发力?