问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

发酵加工对饲料原料中营养物质等指标的影响

创作时间:
作者:
@小白创作中心

发酵加工对饲料原料中营养物质等指标的影响

引用
1
来源
1.
https://www.petslib.cn/news/632516121131483136.html

饲料发酵技术是一种传统的生物技术加工工艺,通过微生物的作用可以改善饲料的营养价值和消化率。本文综述了饲料发酵的历史、原理及其对营养物质组成和抗营养因子的影响,为饲料生产和动物营养研究提供了重要参考。

饲料的发酵

中国发酵大豆的报道可以追溯到公元前3500年。发酵工艺已被广泛用于各种用途,包括细菌、酵母或霉菌、酶的使用。随着微生物学、分子生物学和生物技术的高速发展,极其高效地进行工业化发酵加工成为可能。

与工业生物技术相比,饲料发酵是一种传统但多变的生物技术加工工艺。在欧洲,目前只有少量的发酵饲料被用于单胃动物,但对于单胃动物来说,使用发酵饲料也逐渐引发出一个问题。研究表明,适当的发酵可以改善饲料的营养价值和消化率,并且通常可减少饲料中的抗营养因子含量,从而提高本土生产的蛋白质原料的可用性。

发酵原理

根据定义,饲料的微生物发酵可以是厌氧的(“La vie sans air”;巴斯德),也可以是需氧的。固态原料(无论是全价料、谷物或蛋白质,还是它们的组合物或食品加工的副产品)都可通过添加水、不同微生物或其他生产工艺形成的液态副产物(例如乳清或湿酒糟)进行发酵。

在发酵过程中,大分子被分解成较小的分子,并合成新的分子,这一方面会导致营养物质的损失,另一方面也可以提高饲料的营养价值和消化率。与全发酵日粮相比,业内较为认可部分发酵,因为这种发酵方式可以更好地保留某些营养物质和添加剂,使它们免遭微生物的降解。氧气和水的存在与否决定了发酵的特性,因为这会影响微生物及其代谢活性。在没有水或有少量水的条件下进行的发酵分别被称为固态发酵或半固态发酵。

在某些国家,特别是在亚洲,对相对干燥的混合物用霉菌或某些乳酸菌进行固态发酵或半固态发酵具有十分悠久的历史。如果增加水分含量,且最终产物并不进行干燥,则将产生液态饲料。液态饲料的pH较低,菌群主要为乳酸杆菌,也可能是酵母。这种深层发酵特别适用于养猪生产。依靠可用的技术,可以通过一步或多步技术对饲料进行发酵。

多步发酵可以使用不同的微生物,如第一步发酵使用具有水解蛋白质活性的芽孢杆菌,第二步发酵使用乳酸杆菌或酵母菌,能够对底物进行更加彻底的预消化。实际生产中通常采用自然发酵,在发酵过程开始时不添加发酵剂,但是据我们所知,并无实际操作过程中关于特征、持续性和结果的数据。在进行固态发酵和半固态发酵时,通常会添加诸如益生菌的发酵剂。发酵剂可以充当主要的发酵菌,或用于支持发酵过程所需的其他微生物的生长和活性。此外,发酵剂还可以抑制有害菌或致病菌的生长。

在自然发酵过程中添加微生物酶可能会提高发酵效率,使其对某些抗营养因子或营养物质更具针对性和特异性,其可以称为酶促发酵。

发酵加工对营养物质组成的影响

发酵加工对饲料原料的营养组成似乎有不同的影响,特别是对原料中粗蛋白和氨基酸组成(表1),并且很大程度上取决于发酵类型、发酵剂和发酵环境中优势微生物的酶学特性。

关于饲料发酵对蛋白质含量、氨基酸范围及其消化率的影响,可获得的数据有限。与未发酵的猪全价料相比,发酵可使饲料的粗蛋白含量提高近8%,不过记录显示生物胺含量也较高。

大量研究探讨了豆类特别是大豆蛋白的发酵。混合细菌发酵会提高豆粕的粗蛋白含量。枯草芽孢杆菌、嗜热链球菌和酿酒酵母的共同发酵只会细微改变豆粕的蛋白质含量,但会明显降低大肽(60 kDa以上)的含量。Upadhaya和Kim(2015)指出,用酵母或芽孢杆菌或两者混合来发酵豆粕,会使蛋白质含量提高至少20%,氨基酸浓度保持稳定或提高。用屎肠球菌发酵豆粕,可提高豆粕的粗蛋白含量,除了含硫氨基酸的含量显著降低之外,氨基酸的浓度基本保持稳定。用两步发酵法对大豆蛋白和玉米的混合物进行发酵,发酵时先添加枯草芽孢杆菌,再使用屎肠球菌,结果发现混合物的粗蛋白、必需氨基酸、小肽和游离氨基酸的含量均提高。用枯草芽孢杆菌以及枯草芽孢杆菌和地衣杆菌的混合菌对豌豆进行发酵,粗蛋白含量略微提高(分别为228 g/kg对238 g/kg和235 g/kg),而未观察到氨基酸有其他显著的变化。使用屎肠球菌、植物乳杆菌、布氏乳杆菌、干酪乳杆菌和酿酒酵母发酵羽扇豆,粗蛋白浓度提高8%,但与未发酵羽扇豆相比,真蛋白降低20%。

除了豆类外,油料籽实也是饲料的重要蛋白质来源。用发酵乳杆菌和枯草芽孢杆菌发酵RSM可提高粗蛋白、赖氨酸和含硫氨基酸的含量。用枯草芽孢杆菌、黑曲霉和米曲霉发酵,棉粉的粗蛋白含量可从363 g/kg显著提高到392 g/kg。在上述过程中,发酵会导致氨基酸的降解,并释放出包括生物胺在内的降解产物,这可能是一个问题。这可能表明氨基酸已遭破坏,还可能触发药理反应,如动物的腹泻和呕吐,因此必须严格控制生物胺的形成。在发酵过程中微生物的增殖会先将低分子量的糖作为第一发酵底物,然后再利用淀粉和其他可发酵的碳水化合物。这也许就是大多数研究在采用不同类型的自然发酵或使用有益菌发酵时,最终产品的淀粉含量没有降低或略微降低的原因。

然而,与上述研究的结果相比,一些针对谷物的研究表明,发酵后淀粉含量降低的幅度更大。发酵过程中增殖微生物的类型、酶活性、饲料原料的化学组成、可用于发酵的底物类型以及发酵时间都可能会对经过发酵的原料的营养组成起着重要作用。

发酵加工对抗营养因子的影响

发酵可以降低饲料中抗营养因子的含量,进而提高蛋白质和其他营养物质的消化率。各种微生物,包括酵母、细菌和霉菌,均可用于蛋白质饲料原料的发酵。乳酸发酵,如经典的青贮饲料,能够减少田间豆类、豌豆和羽扇豆中单宁和低聚糖的含量,而不会影响生物碱的含量。发酵导致豆类中抗营养蛋白和胰蛋白酶抑制剂的失活引起了人们的极大兴趣(表2)。

同样,伴大豆球蛋白和β-伴大豆球蛋白在大豆蛋白中也占据着十分重要的地位,因为它们均可能会诱发动物出现超敏反应或过敏反应。各种研究表明,发酵能够诱导潜在的抗原蛋白和胰蛋白酶抑制剂显著降低活性。用枯草芽孢杆菌、屎肠球菌或两种细菌的混合菌来发酵玉米-豆粕型猪饲料,可使大豆球蛋白和β-伴大豆球蛋白的含量分别降低87%和78%。用暹罗芽孢杆菌发酵豆粕,可分别将大豆球蛋白、β-伴大豆球蛋白和胰蛋白酶抑制剂的活性降低86%、70%和95%。

用植物乳杆菌、枯草芽孢杆菌和酿酒酵母发酵豆粕也观察到了类似的情况。大豆球蛋白、β-伴大豆球蛋白和胰蛋白酶抑制剂的活性分别降低了73%、75%和100%。豆粕经过枯草芽孢杆菌发酵后,其中的胰蛋白酶抑制剂活性降至初始值的5%。豌豆经过枯草芽孢杆菌、枯草芽孢杆菌和地衣杆菌的混合菌发酵后,胰蛋白酶抑制剂的活性分别降低了66%和19%。

发酵会影响糖、可发酵碳水化合物和日粮纤维的浓度,相关数据见表2。大多数研究表明,由于其他可发酵营养物质的浓度发生成比例的变化,可溶性碳水化合物的含量降低了,而可溶性纤维的含量却趋于增加。

发酵除了会降低碳水化合物的浓度外,还会进行物质的从头合成,这很有趣,因为其中一些微生物源性碳水化合物具有或至少可能具有益生作用。猪的液态饲料经过枯草芽孢杆菌发酵7d、21d和35d后,研究发酵饲料中时间对代谢产物组成的效应,结果发现发酵饲料含有较高水平的核糖、纤维二糖、山梨糖、丙酮酸和泛酸等代谢产物。令人感兴趣的是,来自乳酸杆菌的胞外多糖可作为功能性益生元。试验发现,罗伊乳杆菌在24h后会产生罗伊(reuteri)葡聚糖和果聚胞外多糖,从而抑制大肠杆菌对黏膜的黏附。

植酸是豆类和其他植物蛋白中已知的抗营养因子,可能会影响磷和其他营养物质在猪和家禽肠道中的表观消化率。不同类型的发酵(包括液态饲料的“自然”发酵)都具有降低其消化率的趋势。这方面的研究大部分都是围绕大豆蛋白开展的(表3)。

与未发酵的豆粕相比,用米曲霉和枯草芽孢杆菌对豆粕进行商业性发酵,结果略微降低了植酸的浓度,但两者的差异不大。Chen等(2014)发现,米曲霉可使豆粕中的植酸水平降低57%;Shi等(2015)则发现,米曲霉能将RSM中的植酸水平降低86%。豌豆经过枯草芽孢杆菌以及枯草芽孢杆菌和地衣杆菌混合菌的发酵后,植酸的含量分别降低16%和17%。用不同的啤酒酵母对羽扇豆进行发酵,会导致植酸的含量减少近80%,但是生物碱的比例保持不变。与未发酵的豆粕相比,经过枯草芽孢杆菌和屎肠球菌发酵的豆粕,植酸的含量降低了近50%。经过屎肠球菌、植物乳杆菌、布氏乳杆菌和干酪乳杆菌发酵的羽扇豆粉,植酸的浓度也出现了类似的情况。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号