【数据结构】树、森林与二叉树的转换(含详细图解)
创作时间:
作者:
@小白创作中心
【数据结构】树、森林与二叉树的转换(含详细图解)
引用
CSDN
1.
https://blog.csdn.net/2301_82213854/article/details/143219756
前言
在数据结构的世界里,树、森林和二叉树是重要的概念,它们之间存在着巧妙的转换关系,这种转换不仅具有理论意义,更在实际的算法设计和数据处理中有着广泛的应用。
树转换为二叉树
转换步骤详解
- 连接兄弟节点
- 给除长子(第一个左孩子)以外的孩子去线
- 层次调整
图例解释:
例如我们有下面一课树:
(一)连接兄弟节点
- 目的与作用:在树结构中,每个节点可能有多个孩子节点。通过连接兄弟节点,可以将树中的兄弟关系转化为二叉树中的右指针关系。这样,在二叉树中,一个节点的右孩子就代表了它在原树中的兄弟节点。
- 具体操作:对于树中的每个节点,除了其第一个孩子节点(长子)外,将其余孩子节点依次连接成一个链表。这个链表的头指针指向该节点的第一个孩子,链表中的每个节点(即原树中的节点)的右指针指向其下一个兄弟节点。
首先,我们将每一个兄弟连接:
(二)给除长子以外的孩子去线
- 目的与作用:在树转换为二叉树的过程中,为了明确二叉树中节点的父子关系,需要去除除长子以外的孩子与父节点之间的直接连接。这样,在二叉树中,一个节点的左孩子就代表了它在原树中的长子。
- 具体操作:在完成兄弟节点的连接后,将原树中除长子以外的孩子节点与父节点之间的连接断开。
然后,给除长子(第一个左孩子)以外的孩子去线:
(三)层次调整
- 目的与作用:经过前面两个步骤的操作,树的结构已经初步转化为二叉树的形式。但是,还需要进行一些调整,以确保二叉树的结构正确。层次调整主要是针对树的根节点和一些特殊情况进行处理,使得转换后的二叉树符合二叉树的定义和规范。
- 具体操作:树的根节点没有兄弟,所以其右指针设为空。对于其他节点,如果在转换过程中出现了不合理的连接或者指针指向错误的情况,需要进行相应的调整。
最后,层次调整:
需要根据二叉树的定义进行调整,确保左孩子是长子,右孩子是兄弟节点。
森林转换为二叉树
转换步骤详解
- 将森林里的每一颗树转换为二叉树
- 将所有二叉树转换为一颗二叉树
图例解释:
例如我们有下面的森林:
(一)将森林里的每一棵树转换为二叉树
- 转换原理:森林是由多棵树组成的集合,而每一棵树都可以独立地按照树转换为二叉树的方法进行转换。这个过程与单独将一棵树转换为二叉树的原理相同,都是通过重新组织节点之间的连接关系,使得树的结构能够在二叉树的框架下得以合理表示。
- 具体操作:首先,将森林里的每一颗树转换为二叉树:
(二)将所有二叉树转换为一棵二叉树
- 连接规则:在将森林中的每一棵树都转换为二叉树之后,需要将这些二叉树连接起来,形成一棵更大的二叉树,从而将森林的结构整合到一个统一的二叉树结构中。
- 具体操作:
- 把第一棵树的根节点作为转换后的二叉树的根节点。(即第一颗树不做任何操作,直接抄下来)
- 将第二棵树的根节点作为第一棵二叉树根节点的右孩子。
- 将第三棵树的根节点作为第二棵二叉树根节点(即第二棵树转换后的二叉树根节点在新二叉树中的位置)的右孩子,以此类推。
然后,将所有二叉树转换为一颗二叉树:
二叉树转换成树
(确实就是树转换为二叉树的逆过程)
转换步骤详解
- 给除长子(第一个左孩子)以外的孩子加线
- 去除与右孩子的连线
- 层次调整
图例解释:
例如我们有下面的二叉树:
(一)加线
- 目的与作用:在二叉树中,一个节点的左孩子代表了它在原树中的长子,右孩子代表了它在原树中的兄弟。加线的目的是为了恢复原树中节点之间的父子关系和兄弟关系。通过加线,可以将二叉树中的兄弟关系重新连接为原树中的父子关系。
- 具体操作:对于二叉树中的每个节点,如果它有右孩子,就在它的右孩子和它的父节点之间添加一条连线。这条连线表示在原树中,这个右孩子节点是该节点的兄弟节点的孩子。
首先,我们给除长子(第一个左孩子)以外的孩子加线:
(二)去线
- 目的与作用:去线的目的是去除在二叉树转换过程中产生的多余连线,以恢复原树的结构。在二叉树中,节点的左孩子和右孩子之间的连线是为了表示二叉树的结构关系,但在原树中并不存在这样的关系。通过去线,可以去除这些多余的连线,使树的结构更加清晰。
- 具体操作:将二叉树中所有节点与其左孩子之间的连线保留,去除其他所有连线。这些保留的连线代表了原树中节点之间的父子关系。
然后,我们去除与右孩子的连线:
(三)层次调整
- 目的与作用:经过加线和去线操作后,树的结构已经初步恢复,但可能还存在一些不合理的层次关系。层次调整的目的是进一步调整树的层次结构,使其符合原树的结构特点。
- 具体操作:根据原树的层次结构,对转换后的树进行层次调整。这可能涉及到调整节点的位置、重新排列节点等操作。
最后,我们进行层次调整:
将二叉树转换成森林
转换步骤详解
- 寻找右孩子去线
- 将分离的二叉树转换成树
(一)寻找右孩子去线
- 目的与作用:在二叉树中,根节点的右孩子以及右孩子的后代可以看作是森林中的一棵树。通过寻找右孩子并去线,可以将二叉树逐步分离成多个子二叉树,每个子二叉树对应森林中的一棵树。
- 具体操作:从二叉树的根节点开始,寻找根节点的右孩子。如果根节点有右孩子,就将根节点与右孩子之间的连线断开。然后,对右孩子为根的子二叉树继续进行相同的操作,直到没有右孩子为止。
首先,我们寻找右孩子去线:
(二)将分离的二叉树转换成树
- 转换原理:经过上一步的操作,二叉树已经被分离成多个子二叉树。这些子二叉树可以看作是森林中的一棵棵树,需要将它们转换回树的结构。这个过程与二叉树转换成树的方法相同,都是通过加线、去线和层次调整等操作来恢复树的结构。
- 具体操作:见上文
画图如下:
然后,我们将分离的二叉树转换成树:
总结
树、森林和二叉树之间的转换是数据结构中的重要内容,它们相互关联,通过这种转换关系,我们可以更好地利用不同结构的特点和优势,在各种应用场景中高效地处理数据和解决问题。
热门推荐
服务器出现conhost进程的原因及处理方法
10款暑期亲子游戏推荐:在游戏中增进亲子关系,开发智力
昙花一现的美食,网红小吃为什么逐渐消失?
精耕差异化赛道 冷冻食品加速培育新质生产力
敏捷Scrum项目管理方法,如何做好敏捷项目管理
山西潞安集团和顺李阳煤业智能掘进系统案例
玉米淀粉和土豆淀粉的区别与应用
海带是“超级食物”!更是日本人的长寿秘诀 营养师教你这样吃海带降胆固醇
关于天师的五个知识,谈谈天师之位的历代传承!
讨要欠款起诉程序:法律途径解决纠纷的实用指南
高手之路:从手指到手腕,掌握乒乓球瞬间击球感觉的技巧与精髓
城市未来引擎:产业园区的革新之路与全球智慧启示
日本知识科普系列(1)——行政区划
事故车维修后必须做四轮定位?专业解析及操作建议
“左眼跳财,右眼跳灾”是真的吗?
PLM系统全面指南
德格印经院院藏雕版档案入选《世界记忆亚太地区名录》
汉字“沌”的读音与本义
外国配偶在中国的绿卡申请条件是什么
猫咪的快乐之猫粮
重大误解的四大构成要件及其五大表现形式
八字纯阳纯阴详解:命理学中的阴阳失衡格局
高压锅炖排骨:快速烹饪出美味佳肴的实用指南
2025年重庆楼市预测及购房建议
煎中药的正确打开方式,您了解吗?
重庆信息通信行业基础设施建设再上台阶 千兆宽带发展增速居全国第七
新疆葡萄将“霸占”您秋季的甜蜜时光
独处:提升个人独立性与生活质量的关键
内蒙古大学团队在光电催化制氨领域取得重要突破
腰椎间盘突出症的病因、分型、临床表现与治疗策略