累积密度函数(Cumulative Density Function,CDF)
创作时间:
作者:
@小白创作中心
累积密度函数(Cumulative Density Function,CDF)
引用
CSDN
1.
https://blog.csdn.net/qq_58860480/article/details/140583935
累积密度函数(CDF)是概率论和统计学中的一个重要概念,用于描述随机变量取某个值及其以下的概率分布情况。CDF给出了随机变量在不同取值范围内的累积概率,是理解概率分布的一种直观方式。
定义
对于一个随机变量 (X),其累积密度函数 (F_X(x)) 定义为随机变量取值小于或等于 (x) 的概率,即:
[ F_X(x) = P(X \leq x) ]
性质
CDF具有以下几个重要性质:
- 非递减性:CDF是一个非递减函数,即对于任意的 (x_1 < x_2),有 (F_X(x_1) \leq F_X(x_2))。
- 范围:CDF的值域在[0, 1]之间,即 (0 \leq F_X(x) \leq 1)。
- 边界条件:当 (x \to -\infty) 时,(F_X(x) \to 0);当 (x \to +\infty) 时,(F_X(x) \to 1)。
- 右连续性:CDF是右连续函数,即对于任意 (x),有 (\lim_{x \to x_0^+} F_X(x) = F_X(x_0))。
CDF的计算
- 离散型随机变量:对于离散型随机变量 (X),其CDF可以通过累加概率质量函数(PMF)得到:
[ F_X(x) = \sum_{t \leq x} P(X = t) ]
- 连续型随机变量:对于连续型随机变量 (X),其CDF可以通过概率密度函数(PDF)积分得到:
[ F_X(x) = \int_{-\infty}^{x} f_X(t) , dt ]
示例
下面通过一个具体的例子来说明CDF的计算和应用。
示例1:离散型随机变量
假设有一个离散型随机变量 (X) 的取值和概率分布如下表:
CDF (F_X(x)) 的计算如下:
- ( F_X(-1) = P(X \leq -1) = 0.1 )
- ( F_X(0) = P(X \leq 0) = P(X = -1) + P(X = 0) = 0.1 + 0.2 = 0.3 )
- ( F_X(1) = P(X \leq 1) = P(X = -1) + P(X = 0) + P(X = 1) = 0.1 + 0.2 + 0.3 = 0.6 )
- ( F_X(2) = P(X \leq 2) = P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = 0.1 + 0.2 + 0.3 + 0.4 = 1.0 )
示例2:连续型随机变量
假设有一个连续型随机变量 (Y) 服从均匀分布 (U(a, b)),其中 (a = 0),(b = 1)。其PDF (f_Y(y)) 为:
CDF (F_Y(y)) 的计算如下:
- 当 (y < 0) 时,(F_Y(y) = 0)
- 当 (0 \leq y \leq 1) 时,
[ F_Y(y) = \int_{0}^{y} f_Y(t) , dt = \int_{0}^{y} 1 , dt = y ]
- 当 (y > 1) 时,(F_Y(y) = 1)
应用
CDF在统计学和概率论中有广泛应用,包括:
- 概率计算:通过CDF可以直接计算随机变量落在某个区间内的概率。
- 分位数计算:给定概率值,可以通过CDF的逆函数求解对应的分位数。
- 统计检验:CDF用于分布的拟合优度检验,例如Kolmogorov-Smirnov检验。
- 随机数生成:通过逆变换抽样法,可以利用CDF生成符合特定分布的随机数。
结论
累积密度函数(CDF)是描述随机变量概率分布的重要工具,通过它可以直观地了解随机变量在各个取值范围内的累积概率。掌握CDF的定义、性质、计算方法及其应用,对于深入理解概率分布和进行相关统计分析具有重要意义。
热门推荐
气体超声波流量计现场使用影响因素的研究
冠心病抗栓治疗新进展:从最新研究到临床用药指南
国家卫健委发布最新指南:这样吃能有效控制尿酸
掌握多时间框架分析,破解股市信号分歧难题
日内交易新利器:120分钟K线分析与实战指南
冬季女性手脚冰凉怎么办?6个实用解决方案帮你告别“冰手冰脚”
昆明城市学院发布2024年招生录取分数线,24省市招生计划出炉
2024电子信息科学与技术专业排名:北大清华分列研究型应用型榜首
鸡蛋果走红健康饮食圈:营养全面,口感独特,创新产品频出
白内障手术新进展:激光替代手术刀,多焦晶体告别眼镜
从识字到阅读:小学语文学习的科学路径
病句修改全攻略:九大类型+四步修改法+40道练习题
修辞手法学习指南:10个步骤提升语言表达力
非成瘾性止咳药喷托维林:镇咳效果及使用指南
医生推荐:枸橼酸喷托维林片,安全有效的广谱止咳药
鱼肝油助信鸽强健骨骼提升免疫力,科学使用效果佳
揭秘数学课堂:积的变化规律
双减之下,如何高效练习三位数乘两位数?
血栓防治月:如何有效预防肺栓塞?
心脏位置异常可致多种心血管问题,定期体检助早发现
盐水漱口,护牙神器了解一下?
盐水漱口,真的能拯救你的口腔吗?
信用卡积分换机票攻略:从入门到精通
双十一剁手党:生肖兔、马、猴如何理智消费?
咽喉炎饮食指南:急性慢性分类指导,这些食物要当心
混沌理论揭秘:大乐透预测的科学真相
温州6.2%增速背后的三个“新”趋势
汪苏泷杨迪综艺搭档:用“没事哒~”化解尴尬的黄金组合
机器换人浪潮下,劳动价值论的坚守与创新
永春白鹤拳:从侨乡走向世界 展中华武术魅力