基于人脸动态特征的活体检测系统实现
创作时间:
作者:
@小白创作中心
基于人脸动态特征的活体检测系统实现
引用
CSDN
1.
https://blog.csdn.net/weixin_53742691/article/details/136610143
活体检测技术在人脸识别系统中扮演着至关重要的角色,它能够有效防止照片、视频等非活体介质的欺骗攻击。本文将介绍一种基于人脸动态特征(如眨眼、张嘴、摇头和点头)的活体检测方法,并提供完整的Python代码实现。
背景说明
在实际应用中,人脸识别系统常常面临以下挑战:
- 照片打卡问题:传统的打卡系统容易被照片欺骗
- 高昂的开发成本:现有的活体检测服务价格昂贵
- 低自主集成度:现有方案难以满足定制化需求
因此,开发一个成本低、可定制的活体检测系统具有重要意义。本文将介绍一种基于人脸动态特征的活体检测方法,通过分析视频流中的人脸动作来判断是否为活体。
技术原理
该系统主要通过分析视频流中的人脸动作来判断是否为活体。具体来说,系统会检测以下几种动作:
- 眨眼:通过计算眼睛的纵横比(EAR)来判断眼睛是否闭合
- 张嘴:通过计算嘴巴的纵横比(MAR)来判断嘴巴是否张开
- 摇头:通过分析鼻子到左右脸颊边界的距离变化来判断头部是否摇动
- 点头:通过分析眉毛到左右脸颊边界的距离变化来判断头部是否点头
代码实现
以下是完整的Python代码实现:
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import argparse
import imutils
import time
import dlib
import cv2
import numpy as np
def eye_aspect_ratio(eye):
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
C = dist.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
def mouth_aspect_ratio(mouth):
A = np.linalg.norm(mouth[2] - mouth[9])
B = np.linalg.norm(mouth[4] - mouth[7])
C = np.linalg.norm(mouth[0] - mouth[6])
mar = (A + B) / (2.0 * C)
return mar
def nose_jaw_distance(nose, jaw):
face_left1 = dist.euclidean(nose[0], jaw[0])
face_right1 = dist.euclidean(nose[0], jaw[16])
face_left2 = dist.euclidean(nose[3], jaw[2])
face_right2 = dist.euclidean(nose[3], jaw[14])
face_distance = (face_left1, face_right1, face_left2, face_right2)
return face_distance
def eyebrow_jaw_distance(leftEyebrow, jaw):
eyebrow_left = dist.euclidean(leftEyebrow[2], jaw[0])
eyebrow_right = dist.euclidean(leftEyebrow[2], jaw[16])
left_right = dist.euclidean(jaw[0], jaw[16])
eyebrow_distance = (eyebrow_left, eyebrow_right, left_right)
return eyebrow_distance
def Face_Recognize(file_path):
EYE_AR_THRESH = 0.27
EYE_AR_CONSEC_FRAMES = 2
MAR_THRESH = 0.5
COUNTER_EYE = 0
TOTAL_EYE = 0
COUNTER_MOUTH = 0
TOTAL_MOUTH = 0
distance_left = 0
distance_right = 0
TOTAL_FACE = 0
nod_flag = 0
TOTAL_NOD = 0
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("./static/shape_predictor_68_face_landmarks.dat")
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
(nStart, nEnd) = face_utils.FACIAL_LANDMARKS_IDXS["nose"]
(jStart, jEnd) = face_utils.FACIAL_LANDMARKS_IDXS['jaw']
(Eyebrow_Start, Eyebrow_End) = face_utils.FACIAL_LANDMARKS_IDXS['left_eyebrow']
vs = FileVideoStream(file_path).start()
fileStream = True
time.sleep(1.0)
while True:
if fileStream and not vs.more():
break
frame = vs.read()
frame = imutils.resize(frame, width=600)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 0)
for rect in rects:
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
Mouth = shape[mStart:mEnd]
mouthMAR = mouth_aspect_ratio(Mouth)
nose = shape[nStart:nEnd]
jaw = shape[jStart:jEnd]
NOSE_JAW_Distance = nose_jaw_distance(nose, jaw)
leftEyebrow = shape[Eyebrow_Start:Eyebrow_End]
Eyebrow_JAW_Distance = eyebrow_jaw_distance(leftEyebrow, jaw)
ear = (leftEAR + rightEAR) / 2.0
mar = mouthMAR
face_left1 = NOSE_JAW_Distance[0]
face_right1 = NOSE_JAW_Distance[1]
face_left2 = NOSE_JAW_Distance[2]
face_right2 = NOSE_JAW_Distance[3]
eyebrow_left = Eyebrow_JAW_Distance[0]
eyebrow_right = Eyebrow_JAW_Distance[1]
left_right = Eyebrow_JAW_Distance[2]
if ear < EYE_AR_THRESH:
COUNTER_EYE += 1
else:
if COUNTER_EYE >= EYE_AR_CONSEC_FRAMES:
TOTAL_EYE += 1
COUNTER_EYE = 0
if mar > MAR_THRESH:
COUNTER_MOUTH += 1
else:
if COUNTER_MOUTH != 0:
TOTAL_MOUTH += 1
COUNTER_MOUTH = 0
if face_left1 >= face_right1 + 2 and face_left2 >= face_right2 + 2:
distance_left += 1
if face_right1 >= face_left1 + 2 and face_right2 >= face_left2 + 2:
distance_right += 1
if distance_left != 0 and distance_right != 0:
TOTAL_FACE += 1
distance_right = 0
distance_left = 0
if eyebrow_left + eyebrow_right <= left_right + 3:
nod_flag += 1
if nod_flag != 0 and eyebrow_left + eyebrow_right >= left_right + 3:
TOTAL_NOD += 1
nod_flag = 0
cv2.putText(frame, "Blinks: {}".format(TOTAL_EYE), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Mouth is open: {}".format(TOTAL_MOUTH), (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "shake one's head: {}".format(TOTAL_FACE), (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "nod: {}".format(TOTAL_NOD), (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Live detection: wink(5)", (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
if TOTAL_EYE >= 5:
cv2.putText(frame, "open your mouth(3)", (300, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
if TOTAL_MOUTH >= 3:
cv2.putText(frame, "shake your head(2)", (300, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
if TOTAL_FACE >= 2:
cv2.putText(frame, "nod(2)", (300, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
if TOTAL_NOD >= 2:
cv2.putText(frame, "Live detection: done", (300, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
cv2.destroyAllWindows()
vs.stop()
if __name__ == '__main__':
Face_Recognize('path_to_your_video_file')
API接口
为了将上述功能封装成API服务,可以使用Flask框架。以下是API接口的实现代码:
import base64
from flask import Flask, request
import numpy as np
import cv2
import imutils
import dlib
from imutils import face_utils
import DynamicRecognition
app = Flask(__name__)
@app.route('/process_video', methods=['GET'])
def process_video():
file_path = request.args.get('file_path')
DynamicRecognition.Face_Recognize(file_path)
return {"result": "Processed successfully"}
if __name__ == '__main__':
app.run(debug=True)
效果测试
以下是系统运行效果的示例截图:
通过上述方法,可以实现基于人脸动态特征的活体检测系统。虽然目前的实现方式是通过视频文件进行处理,但未来可以考虑采用实时视频流传输的方式,以提高系统的实时性和交互性。
热门推荐
IP地址与地理位置的关系揭秘
网络访问地址查询:从基础概念到实战应用
重磅综述:中国多学科专家携手打造肥胖研究的全景视角
复旦CNS成果集中涌现,背后奥秘何在?
面对冬泳跃跃欲试?且慢!先来看看专家划的这些健康重点→
芯片的电路设计中,为什么 CMOS 比 TTL 更受欢迎
李嘉诚旗下港口收入:453亿港元收入背后暗藏228亿美元世纪交易
左心室扩大怎么检查
已达到API请求限制如何解决
计算机二级考试全面学习指南:从理论到实践的系统攻略
法院收了再审申请:民事诉讼法中再审程序的适用与法律规定
【健康】眼睛干涩?小心!可能是干眼症
替尔泊肽和司美格鲁肽,你了解多少?
董事长、总裁和 CEO 的职能有什么区别
智能制造专业的实习安排是怎样的?
金樱子芡实泡茶能降蛋白吗?医生的专业解答来了
为什么金属要做电镀工艺处理,好处在哪里
快乐也分层次,如何才能让自己更快乐?
第一批高才开始续签了!4种续签条件全解析!
全面解析:在香港顺利办理续签手续的终极指南
瑞士SIG SG552突击步枪:模块化设计与高精度性能的完美结合
生育保险政策详解:两种制度并存,保障女性生育权益
三星堆遗址最新考古发现:大型水网、玉石器作坊等重要遗迹揭秘
酱香型白酒坤沙碎沙是什么意思?
河西17亿教育投资:三所新高中如何重塑区域楼市?
全民营养周:你的牛奶喝对了吗?
沪黔携手院士领衔,儿童肝移植为省内患者家庭送福音
什么是电池充放电
家人有乙肝,我该如何预防感染?
生气时出现腹痛的原因是什么