抛物线的定义及标准方程
创作时间:
作者:
@小白创作中心
抛物线的定义及标准方程
引用
1
来源
1.
https://m.renrendoc.com/paper/344554960.html
抛物线的生活实例
- 投篮运动
- 萨尔南拱门
抛物线及其标准方程
实验模型
如图,点F是定点,L是不经过点F的定直线。H是L上任意一点,过点H作,线段FH的垂直平分线交MH于点M,拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?
抛物线定义
平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线
- 其中
- 定点F叫做抛物线的焦点
- 定直线l叫做抛物线的准线
定义告诉我们:
- 判断抛物线的一种方法
- 抛物线上任一点的性质:|MF|=|MH|
练习
- 到定点(3,0)与到直线的距离相等的点的轨迹是()
- A.椭圆
- B.双曲线
- C.抛物线
- D.直线
- 到定点(3,0)与到直线的距离相等的点的轨迹是()
- A.椭圆
- B.双曲线
- C.抛物线
- D.直线
答案:CD
抛物线的标准方程
求曲线方程一般步骤
- 建:建立直角坐标系
- 设:设所求的动点(x,y)
- 限(现):根据限制条件列出等式
- 代:代入坐标与数据
- 化:化简方程
标准方程的推导
如图,以过F点垂直于直线的直线为轴,F和垂足的中点为坐标原点建立直角坐标系K
则F(,0),:x=-
设动点M的坐标为(x,y),
由|MF|=|MH|可知,化简得y2=2px(p>0)
其中焦点F(,0),准线方程l:x=-
p的几何意义是:焦点到准线的距离
四种抛物线的标准方程
- 图形
- 标准方程
- 焦点坐标
- 准线方程
四种形式标准方程及图像的共同特征
- 二次项系数都化成了_______
- 四种形式的方程一次项的系数都含2p
- 四种抛物线都过____点;焦点与准线分别位于此点的两侧,且离此点的距离均为____
四种形式标准方程及图像的区别
- 一次项(x或y)定焦点
- 一次项系数符号定开口方向
- 正号朝坐标轴的正向
- 负号朝坐标轴的负向
应用
例1
已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程
解:∵2P=6,∴P=3
所以抛物线的焦点坐标是(,0)准线方程是x=是一次项系数的是一次项系数的的相反数
练习
求下列抛物线的焦点坐标和准线方程
- y2=-20x
- y=6x2
- 焦点F(-5,0)
- 准线:x=5
- 焦点F(0,)
- 准线:y=-
例2
已知抛物线的焦点坐标是F(0,-2)求它的标准方程
解:因为焦点在y的负半轴上,所以设所求的标准方程为x2=-2py
由题意得,即p=4
∴所求的标准方程为x2=-8y
解题感悟
求抛物线标准方程的步骤:
- 确定抛物线的形式
- 求p值
- 写抛物线方程
巩固提高
求过点A(-3,2)的抛物线的标准方程
解:
- 当抛物线的焦点在y轴的正半轴上时,把A(-3,2)代入x2=2py,得p=
- 当焦点在x轴的负半轴上时,把A(-3,2)代入y2=-2px,得p=
∴抛物线的标准方程为x2=y或y2=x。
注意:焦点或开口方向不定,则要注意分类讨论
例3
一种卫星接收天线的轴截面如图。卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处。已知接收天线的口径为4.8m,深度为0.5m,试建立适当的坐标系,求抛物线的标准方程和焦点坐标。
小结
- 理解抛物线的定义,
- 掌握抛物线的标准方程的四种形式以及P的几何意义.
- 注重数形结合、分类讨论思想的应用
练习
根据下列条件写出各自的抛物线的标准方程
- 焦点是F(3,0)
- 焦点到准线的距离为2
y2=12x
y2=4x,
y2=-4x,
x2=4y,
x2=-4y
作业
P73A组:1,2(必做)
补充:求经过点p(4,-2)的抛物线的标准方程。
温馨提示
- 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
热门推荐
C语言调试中如何查看变量的值
如何通过数据分析优化电商营销策略和客户体验
蒲公英的十大药用价值
传统货代面临哪些业务挑战?货代如何通过数字化系统完成转型升级?
红肉不健康?营养师解答教你食用秘籍翻转红肉营养价值
茶与血糖调节:保持血糖稳定的秘密武器
糖尿病2型可以喝茶吗?绿茶、乌龙茶...这4种茶适合糖尿病人群喝
配置IP摄像机必知的三个网络命令:IP地址查找、可用性检测与路由追踪
离职时需要带走的五种证明及工资权益保障指南
视频背景网页
上海奉贤:“三十年后看新城也不落后”
老司机揭秘:5个省油技巧,让你一年省下两箱油!
测量水中的氯含量的方法:DPD 比色法和安培电极法的原理及优缺点
企业法律法规培训
了解基金净值:单位净值、累计净值与复权净值的区别
精神疾病患者社会支持网络建设:帮助患者建立社会支持网络提供必要的支持和帮助
李商隐《无题·相见时难别亦难》赏析
什么是理赔处理申请书
重要的事,只有一件 |《最重要的事》
如何建立仿真数据库
学生暑假忙点痣?专家:未成年人更易复发 | 这些点痣方法易留疤
网络机柜散热风扇选择:直流还是交流?
提升《我的世界》体验:如何选择最佳电脑配置
鲜牛奶、纯牛奶、高钙奶、早餐奶……营养区别大揭秘!
律师函格式设计的法律规范与实务操作指南
童心绘雷锋,精神永传承
中国干细胞治疗行业发展趋势:市场规模持续扩大,临床应用前景广阔
如何通过数据分析优化电商营销策略和客户体验
春天来了,这10种野菜堪称“天然食物药”,快为家人收好了!
专家学者沪上解密上海中心大厦工程关键技术