PyTorch 深度学习实战:时间序列预测与 LSTM 模型
创作时间:
作者:
@小白创作中心
PyTorch 深度学习实战:时间序列预测与 LSTM 模型
引用
CSDN
1.
https://blog.csdn.net/m0_60414444/article/details/146160709
时间序列预测是机器学习领域的一个重要应用方向,广泛应用于股票价格预测、气象数据预测等领域。长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),通过门控机制解决传统 RNN 的梯度消失问题,擅长捕捉长期依赖关系。本文将通过一个正弦波数据预测的例子,详细介绍如何使用PyTorch实现LSTM模型进行时间序列预测。
一、时间序列预测基础
时间序列是按时间顺序排列的数据点序列,广泛存在于股票价格、气象数据、传感器记录等领域。预测未来时间步的值是时间序列分析的核心任务之一。
LSTM 模型简介
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),通过门控机制解决传统 RNN 的梯度消失问题,擅长捕捉长期依赖关系。其核心结构包括:
- 遗忘门:决定丢弃哪些信息。
- 输入门:更新细胞状态。
- 输出门:决定输出的隐藏状态。
二、时间序列预测实战
我们将使用合成的正弦波数据,训练一个 LSTM 模型预测未来值。
1. 实现步骤
- 生成并预处理数据。
- 定义 LSTM 模型。
- 训练模型。
- 预测并可视化结果。
2. 代码实现
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# 生成正弦波数据
def generate_sin_data(seq_length=1000):
x = np.linspace(0, 50, seq_length)
y = np.sin(x) * 0.5 + 0.5 # 归一化到 [0,1]
return y
# 数据预处理(滑动窗口)
def create_dataset(data, window_size=20):
X, Y = [], []
for i in range(len(data)-window_size):
X.append(data[i:i+window_size])
Y.append(data[i+window_size])
return np.array(X), np.array(Y)
# 参数设置
SEQ_LENGTH = 1000
WINDOW_SIZE = 20
BATCH_SIZE = 32
EPOCHS = 100
# 生成数据
data = generate_sin_data(SEQ_LENGTH)
X, Y = create_dataset(data, WINDOW_SIZE)
# 划分训练集和测试集
split = int(0.8 * len(X))
X_train, X_test = X[:split], X[split:]
Y_train, Y_test = Y[:split], Y[split:]
# 转换为PyTorch张量
X_train = torch.FloatTensor(X_train).unsqueeze(-1) # [样本数, 窗口大小, 特征数]
Y_train = torch.FloatTensor(Y_train)
X_test = torch.FloatTensor(X_test).unsqueeze(-1)
Y_test = torch.FloatTensor(Y_test)
# 定义LSTM模型
class LSTMPredictor(nn.Module):
def __init__(self, input_size=1, hidden_size=50, output_size=1):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
x, _ = self.lstm(x) # 输出形状: [batch, seq_len, hidden_size]
x = x[:, -1, :] # 取最后一个时间步的输出
return self.linear(x)
# 初始化模型、损失函数和优化器
model = LSTMPredictor()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
train_losses = []
for epoch in range(EPOCHS):
model.train()
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs.squeeze(), Y_train)
loss.backward()
optimizer.step()
train_losses.append(loss.item())
if (epoch+1) % 10 == 0:
print(f'Epoch [{epoch+1}/{EPOCHS}], Loss: {loss.item():.4f}')
# 预测测试集
model.eval()
with torch.no_grad():
test_pred = model(X_test).squeeze().numpy()
# 可视化结果
plt.figure(figsize=(12, 6))
plt.subplot(1,2,1)
plt.plot(train_losses)
plt.title("Training Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("MSE Loss")
plt.subplot(1,2,2)
plt.plot(Y_test.numpy(), label="True Value")
plt.plot(test_pred, label="Prediction")
plt.title("Test Prediction")
plt.legend()
plt.show()
三、代码解析
- 数据生成:
- 使用
generate_sin_data生成包含 1000 个点的正弦波。 - 通过
create_dataset创建滑动窗口样本(用前 20 个点预测第 21 个点)。
- 模型结构:
LSTMPredictor包含一个 LSTM 层和一个全连接层。- LSTM 的
hidden_size设置为 50,可根据数据复杂度调整。
- 训练过程:
- 使用均方误差(MSE)作为损失函数。
- Adam 优化器进行参数更新。
- 训练 100 个 epoch,每 10 个 epoch 打印损失值。
- 结果可视化:
- 左图显示训练损失下降曲线。
- 右图对比测试集的真实值和预测值。
四、运行结果
运行代码后,你将看到:
- 训练损失从约 0.1 逐渐下降至 0.001 以下。
- 测试集的预测曲线(橙色)与真实曲线(蓝色)基本重合。
五、改进建议
- 增加特征维度:除了历史值,可加入温度、湿度等多维特征。
- 使用更复杂模型:如堆叠多层 LSTM 或结合 CNN。
- 调整超参数:尝试不同的
hidden_size或WINDOW_SIZE。 - 使用真实数据:替换为股票价格或电力负荷数据。
六、总结
本文介绍了时间序列预测的基本概念,并使用 PyTorch 实现了一个简单的 LSTM 预测模型。通过这个例子,我们学习了如何处理序列数据、构建 LSTM 模型以及进行训练和预测。
在下一篇文章中,我们将探讨生成对抗网络(GAN)在图像生成中的应用。敬请期待!
代码实例说明:
- 可直接在 Python 3.7+ 环境中运行,依赖库:
torch,numpy,matplotlib。 - GPU 加速:修改
model = model.to('cuda')并转移数据到 GPU。 - 调整
WINDOW_SIZE可改变历史数据长度,hidden_size影响模型容量。
希望这篇文章能帮助你入门时间序列预测!如有问题,欢迎在评论区讨论。
热门推荐
凤尾草:清热利湿、凉血解毒的中药材
备孕期间是否可以服用感冒药,需要几天才能代谢完
8000元最强电脑配置选购攻略大揭秘
河钓秘籍:揭秘河里钓鱼的最佳饵料
如何有效撰写债权催收短信:法律实务与风险防范
相切于球体上定点的平面
如何直接测量蓄电池的电压?
《艾尔登法环》火属性详解:高伤害与特殊效果的应用攻略
2024上半年日本漫画銷量Top10,网友:第1名凭什么?
工业相机镜头介绍:从基础到应用的全面解析
投资心理学:理解投资者行为与决策的心理因素
莱昂纳多·迪卡普里奥:从童星到奥斯卡影帝的传奇人生
为何不建议购买万能账户?扣除初始费用是多少?
“泻立停”被全面禁售、召回
怀孕初期用药应避免哪些?有什么替代药物可供选择?
孩子成年后父母离婚孩子跟谁怎么判
偷东西案件最新进展:法律适用与社会影响
小细胞肺癌患者的饮食指南
羊肉家常菜做法大全,秋冬滋补吃起来!
羊肉炖黄豆:传统美味的制作方法与营养搭配
这座隐秘小国,藏着世界葡萄酒的发源地
多肉花盆批发价格揭秘 如何为家居增添绿意
网贷逾期微信支付宝银行卡被冻结怎么办
踏板车齿轮油参数 踏板摩托车用什么齿轮油
污水处理中的成本与效益分析
AI提问帮助学习弯道超车!如何使用AI加速学习?
耳鼻喉科能缓解头晕恶心吗
窝沟封闭的最佳年龄是什么?了解窝沟封闭的最佳实施时机
2024年中国竹制品行业现状与发展前景展望,“以竹代塑” 成大势所趋
红参和西洋参的区别