PyTorch 深度学习实战:时间序列预测与 LSTM 模型
创作时间:
作者:
@小白创作中心
PyTorch 深度学习实战:时间序列预测与 LSTM 模型
引用
CSDN
1.
https://blog.csdn.net/m0_60414444/article/details/146160709
时间序列预测是机器学习领域的一个重要应用方向,广泛应用于股票价格预测、气象数据预测等领域。长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),通过门控机制解决传统 RNN 的梯度消失问题,擅长捕捉长期依赖关系。本文将通过一个正弦波数据预测的例子,详细介绍如何使用PyTorch实现LSTM模型进行时间序列预测。
一、时间序列预测基础
时间序列是按时间顺序排列的数据点序列,广泛存在于股票价格、气象数据、传感器记录等领域。预测未来时间步的值是时间序列分析的核心任务之一。
LSTM 模型简介
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),通过门控机制解决传统 RNN 的梯度消失问题,擅长捕捉长期依赖关系。其核心结构包括:
- 遗忘门:决定丢弃哪些信息。
- 输入门:更新细胞状态。
- 输出门:决定输出的隐藏状态。
二、时间序列预测实战
我们将使用合成的正弦波数据,训练一个 LSTM 模型预测未来值。
1. 实现步骤
- 生成并预处理数据。
- 定义 LSTM 模型。
- 训练模型。
- 预测并可视化结果。
2. 代码实现
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# 生成正弦波数据
def generate_sin_data(seq_length=1000):
x = np.linspace(0, 50, seq_length)
y = np.sin(x) * 0.5 + 0.5 # 归一化到 [0,1]
return y
# 数据预处理(滑动窗口)
def create_dataset(data, window_size=20):
X, Y = [], []
for i in range(len(data)-window_size):
X.append(data[i:i+window_size])
Y.append(data[i+window_size])
return np.array(X), np.array(Y)
# 参数设置
SEQ_LENGTH = 1000
WINDOW_SIZE = 20
BATCH_SIZE = 32
EPOCHS = 100
# 生成数据
data = generate_sin_data(SEQ_LENGTH)
X, Y = create_dataset(data, WINDOW_SIZE)
# 划分训练集和测试集
split = int(0.8 * len(X))
X_train, X_test = X[:split], X[split:]
Y_train, Y_test = Y[:split], Y[split:]
# 转换为PyTorch张量
X_train = torch.FloatTensor(X_train).unsqueeze(-1) # [样本数, 窗口大小, 特征数]
Y_train = torch.FloatTensor(Y_train)
X_test = torch.FloatTensor(X_test).unsqueeze(-1)
Y_test = torch.FloatTensor(Y_test)
# 定义LSTM模型
class LSTMPredictor(nn.Module):
def __init__(self, input_size=1, hidden_size=50, output_size=1):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
x, _ = self.lstm(x) # 输出形状: [batch, seq_len, hidden_size]
x = x[:, -1, :] # 取最后一个时间步的输出
return self.linear(x)
# 初始化模型、损失函数和优化器
model = LSTMPredictor()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
train_losses = []
for epoch in range(EPOCHS):
model.train()
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs.squeeze(), Y_train)
loss.backward()
optimizer.step()
train_losses.append(loss.item())
if (epoch+1) % 10 == 0:
print(f'Epoch [{epoch+1}/{EPOCHS}], Loss: {loss.item():.4f}')
# 预测测试集
model.eval()
with torch.no_grad():
test_pred = model(X_test).squeeze().numpy()
# 可视化结果
plt.figure(figsize=(12, 6))
plt.subplot(1,2,1)
plt.plot(train_losses)
plt.title("Training Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("MSE Loss")
plt.subplot(1,2,2)
plt.plot(Y_test.numpy(), label="True Value")
plt.plot(test_pred, label="Prediction")
plt.title("Test Prediction")
plt.legend()
plt.show()
三、代码解析
- 数据生成:
- 使用
generate_sin_data
生成包含 1000 个点的正弦波。 - 通过
create_dataset
创建滑动窗口样本(用前 20 个点预测第 21 个点)。
- 模型结构:
LSTMPredictor
包含一个 LSTM 层和一个全连接层。- LSTM 的
hidden_size
设置为 50,可根据数据复杂度调整。
- 训练过程:
- 使用均方误差(MSE)作为损失函数。
- Adam 优化器进行参数更新。
- 训练 100 个 epoch,每 10 个 epoch 打印损失值。
- 结果可视化:
- 左图显示训练损失下降曲线。
- 右图对比测试集的真实值和预测值。
四、运行结果
运行代码后,你将看到:
- 训练损失从约 0.1 逐渐下降至 0.001 以下。
- 测试集的预测曲线(橙色)与真实曲线(蓝色)基本重合。
五、改进建议
- 增加特征维度:除了历史值,可加入温度、湿度等多维特征。
- 使用更复杂模型:如堆叠多层 LSTM 或结合 CNN。
- 调整超参数:尝试不同的
hidden_size
或WINDOW_SIZE
。 - 使用真实数据:替换为股票价格或电力负荷数据。
六、总结
本文介绍了时间序列预测的基本概念,并使用 PyTorch 实现了一个简单的 LSTM 预测模型。通过这个例子,我们学习了如何处理序列数据、构建 LSTM 模型以及进行训练和预测。
在下一篇文章中,我们将探讨生成对抗网络(GAN)在图像生成中的应用。敬请期待!
代码实例说明:
- 可直接在 Python 3.7+ 环境中运行,依赖库:
torch
,numpy
,matplotlib
。 - GPU 加速:修改
model = model.to('cuda')
并转移数据到 GPU。 - 调整
WINDOW_SIZE
可改变历史数据长度,hidden_size
影响模型容量。
希望这篇文章能帮助你入门时间序列预测!如有问题,欢迎在评论区讨论。
热门推荐
如何用C语言输出心形图案
角膜厚度多少适合做近视手术?
先天性脊柱侧弯的原因有哪些
博士留学自我审视:从学术背景到职业规划
如何评估物业服务质量?这些服务对居住体验有何影响?
血压高会导致眼压高吗?
库里社媒连晒30张合照!深情告别克莱:一辈子的水花兄弟
解郁丸功效多,但这3类人最好别吃
转按揭贷款流程、所需材料及费用详解
测试工程师助理面试问什么
合同质保与维保:区别与联系
吃西红柿可以减肥吗?从营养价值到减肥功效的全面解析
大草原的动物:特征、生态系统和例子
智能电网巡检与传感器数据自动分析:AI技术助力设备状态实时监控与故障预警
智能巡检机器人的大模型训练
主板芯片组a320和b450的区别
怎么从应收账款看企业经营问题
LED显示屏GOB和COB的区别,哪个价格贵?
白眼狼是如何养成的
MATLAB异常行为监测系统
沉沉夏夜兰堂开,飞蚊伺暗声如雷。
牙买加飞人,速度与激情的传奇—博尔特的非凡生涯
全面盘点:热门二次创作软件清单及功能详解
币圈合约是什么意思,有哪些类型?币圈合约入门教程
高铁和动车有什么区别?不仅仅是G和D的区别,为何总被混为一谈?
乔甸镇五步走 织密森林草原防灭火防护网
AI网关:如何零代码解决AI幻觉问题?
抚养权变更起纠纷 法官温情调解护成长
人工智能赋能中医药创新发展:世界最大中医药数据库TCMBank问世
合理设置文件夹权限,确保数据安全与隐私保护的实用指南