问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

RNN(循环神经网络)

创作时间:
作者:
@小白创作中心

RNN(循环神经网络)

引用
CSDN
1.
https://m.blog.csdn.net/weixin_63685622/article/details/138789686

循环神经网络(RNN)是处理序列数据的重要模型,在自然语言处理等领域有广泛应用。本文将详细介绍RNN的基本概念、作用、分类,以及其变体LSTM和GRU的原理和使用方法。

1.RNN简介

RNN(Recurrent Neural Network), 中文称作循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出.

RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.

  • 结构:三层,输入、输出、隐藏层(循环在隐藏层)

1.1RNN模型的作用:

因为RNN结构能够很好利用序列之间的关系,因此针对自然界具有连续性的输入序列,如人类的语言,语音等进行很好的处理,广泛应用于NLP领域(自然语言处理)的各项任务,如文本分类,情感分析,意图识别,机器翻译等.

  • 语言处理示例

1.2RNN的分类

1.2.1按照输入、输出的结构分类

N vs M:即N个输入,M个输出的RNN
相当于编码器(左下:N对1)和解码器(右上:1对M)

1.2.2按照RNN内部构造分类

RNN本身缺点:不可并行计算,故当数据量和模型体量过大会制约其发展;transform可改善其不可并行计算的问题。

2.传统RNN

图中,括号内的为全连接层(线性层)
激活函数(tanh):用于帮助调节流经网络的值, tanh函数将值压缩在-1和1之间.

2.1 Pytorch中传统RNN工具的使用

  • 位置:在torch.nn工具包之中,通过torch.nn.RNN可调用.
    torch.nn.RNN详解
import torch
import torch.nn as nn
rnn=nn.RNN(5,6,2)#实例化rnn对象
#参数1:输入张量x的维度-input_size
#参数2:隐藏层的维度(隐藏层神经元个数)-hidden_size
#参数3:隐藏层的层数-num_layers
#torch.randn-随机产生正态分布的随机数
input1=torch.randn(1,3,5)#设定输入张量x-1层3行5列
#参数1:输入序列长度-sequence_lengh
#参数2:批次的样本-batch_size(表示:3个样本每个样本一个字母(序列长))
#参数3:输入张量x的维度-input_size
h0=torch.randn(2,3,6)#设定初始化的h0
#第一个参数: num_layers * num_directions(层数+网络方向数(1或2))
#第二个参酸: batch_size(批次的样本数)
#第三个参酸: hidden_size(隐藏层的维度)
output,hn=rnn(input1,h0)
#最后输出和最后一层的隐藏层输出
print(output)
print(output.shape)
print(hn)
print(hn.shape)

摘录自-循环神经网络 - RNN基本原理详解

2.2传统RNN优缺点

  • 优势:
    由于内部结构简单,对计算资源要求低,相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多,在短序列任务上性能和效果都表现优异.
  • 缺点:
    传统RNN在解决长序列之间的关联时,通过实践,证明经典RNN表现很差,原因是在进行反向传播的时候,过长的序列导致梯度的计算异常,发生梯度消失或爆炸.
  • NaN值:(Not a Number,非数)是计算机科学中数值数据类型的一类值,表示未定义或不可表示的值。

3.LSTM模型

3.1 LSTM简介

3.1.1 遗忘门

图中sigma为sigmiod函数,将值压缩在0-1之间。

3.1.2 输入门

3.1.3 细胞状态

3.1.4 输出门

3.2Bi-LSTM

3.3 Pytorch中LSTM工具的使用

import torch
import torch.nn as nn
lstm=nn.LSTM(5,6,2)#实例化rnn对象
#参数1:输入张量x的维度-input_size
#参数2:隐藏层的维度(隐藏层神经元个数)-hidden_size
#参数3:隐藏层的层数-num_layers
input1=torch.randn(1,3,5)#设定输入张量x-1层3行5列
#参数1:输入序列长度-sequence_lengh
#参数2:批次的样本-batch_size(表示:3个样本每个样本一个字母(序列长))
#参数3:输入张量x的维度-input_size
h0=torch.randn(2,3,6)#设定初始化的h0(隐藏层)
c0=torch.randn(2,3,6)#设定初始化的c0(细胞状态)
#第一个参数: num_layers * num_directions(层数+网络方向数(1或2))
#第二个参酸: batch_size(批次的样本数)
#第三个参酸: hidden_size(隐藏层的维度)
output,(hn,cn)=lstm(input1,(h0,c0))
#最后输出和最后一层的隐藏层输出
print(output)
print(output.shape)
print(hn)
print(hn.shape)
print(cn)
print(cn.shape)

3.4 LSTM优缺点

4.GRU模型

4.1GRU简介

4.2Pytorch中LSTM工具的使用

import torch
import torch.nn as nn
gru=nn.GRU(5,6,2)#实例化rnn对象
#参数1:输入张量x的维度-input_size
#参数2:隐藏层的维度(隐藏层神经元个数)-hidden_size
#参数3:隐藏层的层数-num_layers
input1=torch.randn(1,3,5)#设定输入张量x-1层3行5列
#参数1:输入序列长度-sequence_lengh
#参数2:批次的样本-batch_size(表示:3个样本每个样本一个字母(序列长))
#参数3:输入张量x的维度-input_size
h0=torch.randn(2,3,6)#设定初始化的h0
#第一个参数: num_layers * num_directions(层数+网络方向数(1或2))
#第二个参酸: batch_size(批次的样本数)
#第三个参酸: hidden_size(隐藏层的维度)
output,hn=gru(input1,h0)
#最后输出和最后一层的隐藏层输出
print (output)
print(output.shape)
print(hn)
print(hn.shape)

4.3GRU优缺点

注:参考资料

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号