问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

图像超分辨新突破!南洋理工提出InvSR,利用预训练扩散模型提升SR性能

创作时间:
作者:
@小白创作中心

图像超分辨新突破!南洋理工提出InvSR,利用预训练扩散模型提升SR性能

引用
CSDN
1.
https://blog.csdn.net/xs1997/article/details/144951020

南洋理工大学的研究者们提出了一种基于扩散反演的新型图像超分辨率(SR)技术InvSR,该技术能够利用大型预训练扩散模型中蕴含的丰富图像先验来显著提高SR性能。

核心技术原理

该方法的核心是一个深度噪声预测器,用于估计前向扩散过程的最佳噪声图。一旦训练完成,这个噪声预测器就可以用来初始化沿扩散轨迹的部分采样过程,从而生成理想的高分辨率结果。

效果展示

真实世界图像超分辨率

AIGC 图像增强

不同方法对RealSet80数据集中两个典型真实示例的视觉结果。为了清晰比较,对于基于扩散的方法,采样步骤数以“方法名称-步骤”格式注释。

方法优势

论文提出的方法提供了一种高效灵活的采样机制,允许用户根据降级类型或其特定要求自由调整采样步骤数。在第一个示例中,主要因模糊而降级,多步采样优于单步采样,因为它可以逐步恢复更精细的细节。相反,在第二个具有严重噪声的示例中,单个采样步骤足以获得令人满意的结果,而额外的步骤可能会放大噪声并引入不必要的伪影。

限制

InvSR需要进行平铺操作来生成高分辨率图像,这将大大增加推理时间。由于InvSR的生成特性,有时无法保持100%的保真度。InvSR有时无法在复杂的现实场景下生成完美的细节。

结论

论文提出了一种基于扩散反演的新型SR方法InvSR。该方法引入了一个噪声预测网络,旨在估计最佳噪声图,从而能够构建预训练扩散模型的中间状态作为起始采样点。这种设计在两个方面很有吸引力:首先,InvSR可以充分利用预训练扩散模型中封装的先验知识,从而促进SR性能。其次,InvSR提供了一种灵活的采样策略,能够通过结合噪声预测器的时间相关架构从扩散模型的各种中间状态开始。这种灵活性允许用户根据退化类型或其特定要求自由调整采样步骤。即使将采样步骤减少到只有一个,InvSR仍然表现出比最近的一步基于扩散的方法显著的优势,表明其有效性和效率。

相关链接

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号