问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

YARN和MapReduce的内存优化配置详解

创作时间:
作者:
@小白创作中心

YARN和MapReduce的内存优化配置详解

引用
1
来源
1.
http://www.cdweb.net/article/ddcccg.html

在大数据处理领域,YARN(Yet Another Resource Negotiator)和MapReduce是两个核心组件。YARN负责资源管理和调度,而MapReduce则负责数据处理。如何合理配置它们的内存使用,对于提升集群性能至关重要。本文将详细介绍YARN和MapReduce的内存优化配置方法,帮助读者更好地理解和应用这些技术。

在Hadoop2.x中, YARN负责管理MapReduce中的资源(内存, CPU等)并且将其打包成Container。
使之专注于其擅长的数据处理任务, 将无需考虑资源调度. 如下图所示

YARN会管理集群中所有机器的可用计算资源. 基于这些资源YARN会调度应用(比如MapReduce)发来的资源请求, 然后YARN会通过分配Co
ntainer来给每个应用提供处理能力, Container是YARN中处理能力的基本单元, 是对内存, CPU等的封装.

目前我这里的服务器情况:6台slave,每台:32G内存,2*6核CPU。

由于hadoop 1.x存在JobTracker和TaskTracker,资源管理有它们实现,在执行mapreduce作业时,资源分为map task和reduce task。
所有存在下面两个参数分别设置每个TaskTracker可以运行的任务数:

  • mapred.tasktracker.map.tasks.maximum

  • 6

  • mapred.tasktracker.reduce.tasks.maximum

  • 4

  • 一个task tracker最多可以同时运行的reduce任务数量

但是在hadoop 2.x中,引入了Yarn架构做资源管理,在每个节点上面运行NodeManager负责节点资源的分配,而slot也不再像1.x那样区分Map slot和Reduce slot。在Yarn上面Container是资源的分配的最小单元。

Yarn集群的内存分配配置在yarn-site.xml文件中配置:

  • yarn.nodemanager.resource.memory-mb

  • 22528

  • 每个节点可用内存,单位MB

  • yarn.scheduler.minimum-allocation-mb

  • 1500

  • 单个任务可申请最少内存,默认1024MB

  • yarn.scheduler.maximum-allocation-mb

  • 16384

  • 单个任务可申请大内存,默认8192MB

由于我Yarn集群还需要跑Spark的任务,而Spark的Worker内存相对需要大些,所以需要调大单个任务的大内存(默认为8G)。

而Mapreduce的任务的内存配置:

  • mapreduce.map.memory.mb

  • 1500

  • 每个Map任务的物理内存限制

  • mapreduce.reduce.memory.mb

  • 3000

  • 每个Reduce任务的物理内存限制

  • mapreduce.map.java.opts

  • -Xmx1200m

  • mapreduce.reduce.java.opts

  • -Xmx2600m

mapreduce.map.memory.mb:每个map任务的内存,应该是大于或者等于Container的最小内存。
按照上面的配置:每个slave可以运行map的数据<= 22528/1500,reduce任务的数量<=22528/3000 。

mapreduce.map.memory.mb >mapreduce.map.java.opts
mapreduce.reduce.memory.mb >mapreduce.reduce.java.opts

mapreduce.map.java.opts / mapreduce.map.memory.mb
=0.700.80
mapreduce.reduce.java.opts / mapreduce.reduce.memory.mb
=0.70
0.80

在yarn container这种模式下,JVM进程跑在container中,mapreduce.{map|reduce}.java.opts 能够通过Xmx设置JVM大的heap的使用,
一般设置为0.75倍的memory.mb,

则预留些空间会存储java,scala code等。

到此,相信大家对“YARN和MapReduce的内存优化怎么配置”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

网站标题:YARN和MapReduce的内存优化怎么配置-创新互联

标题

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号