问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

黑洞热力学:从经典到前沿的理论探索

创作时间:
作者:
@小白创作中心

黑洞热力学:从经典到前沿的理论探索

引用
1
来源
1.
https://news.ucas.ac.cn/qcsb/19254628044e4a04bb8af96e48d0706f.htm

黑洞热力学是现代物理学中一个令人着迷的研究领域,它将引力理论、量子力学和统计物理紧密地联系在一起。从20世纪70年代贝肯斯坦和霍金的经典研究,到近年来拓展黑洞热力学的突破性进展,这一领域的研究不仅深化了我们对黑洞本质的理解,更为量子引力理论的发展提供了重要线索。本文将带你走进黑洞热力学的世界,探索这个连接宇宙最深奥秘密的理论框架。


图1 黑洞的概念图

20世纪70年代,贝肯斯坦(Bekenstein J D)思考了一个看似简单却直击物理学核心的问题:当你把一杯热茶扔进一个黑洞,宇宙中的熵是否会减少?这个问题源自他与导师惠勒(Wheeler J A)的对话,揭示了黑洞与热力学之间深刻的联系。

熵是热力学中的核心概念,代表系统的无序度。根据热力学第二定律,孤立系统的熵总是随时间自发增加。然而,按照广义相对论,黑洞是一个只吞不吐的“怪兽”,黑洞的无毛定理表明,我们只能了解黑洞的质量、角动量和电荷量,而无法获取其他信息。这意味着黑洞似乎携带零熵,这显然与热力学第二定律相矛盾。

为了解决这个矛盾,贝肯斯坦通过一系列思想实验,提出黑洞应该具有熵,且黑洞熵正比于其视界面积。随后,霍金(Hawking S W)使用弯曲时空的量子场论技术,证明了黑洞确实有热辐射,从而具备温度和熵等热力学特性。这一发现表明,黑洞本质上是一个热力学系统,其熵的表达式包含了引力常数、光速、普朗克常数和玻尔兹曼常数等基本自然常数,揭示了引力理论、量子力学和统计物理之间的深刻联系。

黑洞热力学本质上是量子引力效应的体现,因此黑洞成为研究量子引力的理想对象。从爱因斯坦开始,统一量子力学和引力理论就是物理学家的梦想。黑洞物理中隐藏着完整量子引力理论的线索,激发了近几十年来许多激动人心的新思想和新方法。特别是黑洞熵与视界面积的关系,启发了霍夫特('t Hooft G)和萨斯坎德(Susskind L)在20世纪90年代提出的全息原理。这一原理认为,一个引力系统的信息可以完全编码在其边界上。1998年,马尔达西纳(Maldacena J)找到了全息原理的具体实现——著名的AdS/CFT对偶,即AdS空间内的引力理论可以由其边界上的共形场论来描述。近年来的相关研究还包括热力学和引力场方程的等价性、黑洞信息佯谬,以及量子纠缠和时空等。

近十几年来,黑洞热力学领域最重要的发展之一是所谓的拓展热力学,或称为拓展相空间中的黑洞热力学。拓展热力学的一个重要动机是理论形式的完备性。著名的Smarr关系联系了黑洞的质量、温度、熵以及宇宙学常数等物理量。然而,与其他物理量不同,宇宙学常数却不直接出现在传统的黑洞热力学第一定律中。为了匹配Smarr关系和黑洞热力学第一定律,需要将宇宙学常数作为额外的热力学变量处理,其共轭量是黑洞的热力学体积。在更一般的引力理论中,其他耦合参数也需要被纳入拓展的热力学形式中。简而言之,Smarr关系为拓展黑洞热力学的第一定律提供了线索,引出了拓展相空间中的黑洞热力学形式。

拓展的黑洞热力学具有丰富的物理内涵及理论应用。首先,拓展的热力学形式为研究各种类型的黑洞相变提供了肥沃的土壤,引发了一个被称为黑洞化学的研究方向。黑洞被认为是由具有类似于范德瓦尔斯相互作用的微观分子组成,这种相互作用可以是吸引或排斥的。有趣的是,拓展的黑洞热力学包含了超出普通物质系统的许多新奇的热力学行为。其次,在全息原理的框架下,已有几种方案探索这种拓展的热力学形式在其边界上的对偶。尽管在引力系统中,宇宙学常数往往被解释为热力学压强,但在边界理论中它并不对应于压强,而是对应于中心荷。最后,拓展的黑洞热力学还在全息复杂性、弱宇宙监督猜想和弱引力猜想等研究领域中得到应用。

作为一个新兴的研究领域,拓展的黑洞热力学中还存在许多亟待解决的问题。例如,宇宙学常数在广义相对论中被视为常量,原则上不应作为变量处理。这就要求将广义相对论视为更大理论框架的一部分,在这个框架中,宇宙学常数不是基本物理量,而是由其他物理机制诱导出来的。近期的文献提供了一个膜世界的模型来实现这个想法,能够通过膜上的张力调节宇宙学常数。

拓展黑洞热力学中的另一个重要问题是,相比于传统黑洞热力学,其深层次的理论结构并不清晰。在早期文献中,拓展的热力学第一定律总是被作为先验假设使用,之后再在此基础上导出热力学体积等共轭量。然而,这种强行写出的第一定律形式总是显得不自然,因为它看起来更像是一种人为设定,而不是植根于引力理论本身。

近期的研究成果解决了这个长期存在且十分重要的问题。要解释拓展黑洞热力学背后的理论结构,需要强大的技术手段。我们知道,传统的黑洞热力学中已经积累了相当多的工具和方法。在20世纪90年代,沃尔德(Wald R)等人提出和发展了一套使用协变相空间来研究引力系统的方法,最主要的理论框架体现在伊耶(Iyer V)和沃尔德1994年的论文中,因此这个方法也常被称为Iyer-Wald形式化方法。这套工具强大且优美,经过30年时间,伊耶和沃尔德的原始文章的影响力不降反升。通过这套方法,可以很容易地定义引力系统中的各种守恒量,比如能量和角动量等。同时,它还自然地给出了传统黑洞热力学的内禀和普适结构。简单地说,在Iyer-Wald形式化方法中,存在一个数学表达式联系起了黑洞的视界和无穷远处,在黑洞的视界表面,它给出的是黑洞的温度和熵的乘积;而在无穷远处,它给出的是黑洞的能量等守恒量。这样就直接导出了黑洞热力学的Smarr关系和热力学第一定律。

既然Iyer-Wald形式化方法可以导出传统黑洞热力学,合理猜测是对该方法进行适当拓展,可以导出拓展的黑洞热力学。于是,在Iyer-Wald形式化方法中,考虑对宇宙学常数和其他耦合参数的变分,确实能够自然地导出拓展的热力学第一定律。通过具体的黑洞实例,得到了各个热力学量的精确表达式。这项研究具有两方面的重要意义。第一,它揭示了拓展黑洞热力学更深层次的理论结构。发现拓展的Iyer-Wald形式化方法可以描述拓展的黑洞热力学,正如Iyer-Wald形式化方法本身可以描述传统黑洞热力学那样。第二,它提供了一个新颖和系统的方法来计算拓展黑洞热力学中耦合参数的共轭热力学量。在早期文献中,宇宙学常数的共轭量是黑洞的热力学体积。对于最简单的Schwarzschild-AdS黑洞,这个热力学体积的表达式刚好与黑洞的几何体积一致。然而,对于稍复杂的Kerr-AdS黑洞,这一关系就已经不再成立。这种含糊性一直是该领域中让人非常困惑的问题。与之相比,新方法很好地解释了这一现象。具体来说,热力学体积含有两部分的贡献,其中,对作用量中显含的宇宙学常数的变分给出几何体积项,而黑洞解本身可能还隐含地依赖于宇宙学常数,对这种隐式的宇宙学常数变分就会贡献出额外的体积项。

总而言之,这项工作提供了拓展黑洞热力学背后的理论框架,从而将其建立在一个坚实的基础之上。在新方法中,热力学体积以及其他耦合参数的共轭量都可以得到良好的定义和计算,厘清了之前这方面的含糊之处。基于这套方法,得以一窥引力和黑洞物理的严丝合缝、精细优雅的理论结构。

参考文献

[1] Bekenstein J D. Black holes and entropy. Phys Rev D, 1973, 7: 2333–2346.

[2] Hawking S W. Particle creation by black holes. Commun Math Phys, 1975, 43: 199-220

[3] Maldacena J. The large N limit of superconformal field theories and supergravity. Adv Theor Math Phys, 1998, 2: 231-252

[4] Kastor D, Ray S, Traschen J. Enthalpy and the mechanics of AdS black holes. Class Quantum Grav, 2009, 26: 195011

[5] Kubizňák D, Mann R B, Teo M. Black hole chemistry: Thermodynamics with Lambda. Class Quantum Grav, 2017, 34: 063001

[6] Wei S W, Liu Y X. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition. Phys Rev Lett, 2015, 115: 111302

[7] Wei S W, Liu Y X, Mann R B. Repulsive interactions and universal properties of charged anti–de Sitter black hole microstructures. Phys Rev Lett, 2019, 123: 071103

[8] Ahmed M B, Cong W, Kubizňák D, et al. Holographic dual of extended black hole thermodynamics. Phys Rev Lett, 2023, 130: 181401

[9] Al Balushi A, Hennigar R A, Kunduri H K, et al. Holographic complexity and thermodynamic volume. Phys Rev Lett, 2021, 126: 101601

[10] Gwak B. Thermodynamics with pressure and volume under charged particle absorption. J High Energy Phys, 2017, 11: 129.

[11] Harlow D, Heidenreich B, Reece M, et al. Weak gravity conjecture. Rev Mod Phys, 2023, 95: 035003

[12] Frassino A M, Pedraza J F, Svesko A, et al. Higher-dimensional origin of extended black hole thermodynamics. Phys Rev Lett, 2023, 130: 161501

[13] Xiao Y, Tian Y, Liu Y X. Extended black hole thermodynamics from extended Iyer-Wald formalism. Phys Rev Lett, 2024, 132: 021401

[14] Iyer V, Wald R M. Some properties of the Noether charge and a proposal for dynamical black hole entropy. Phys Rev D, 1994, 50: 846-864

[15] Dutta S, Punia G S. String theory corrections to holographic black hole chemistry. Phys Rev D, 2022, 106: 026003

原文链接:科学通报:https://www.sciengine.com/CSB/doi/10.1360/TB-2024-0126

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号