问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

GPT-4推理更像人了!中国科学院提出「思维传播」,类比思考完胜CoT,即插即用

创作时间:
作者:
@小白创作中心

GPT-4推理更像人了!中国科学院提出「思维传播」,类比思考完胜CoT,即插即用

引用
1
来源
1.
https://hub.baai.ac.cn/view/31458

大模型推理难题攻克了?中国科学院联手耶鲁大学的研究人员提出了全新框架「思维传播」,让大模型能够像人类一样类比思考。

如今,GPT-4、PaLM等巨型神经网络模型横空出世,已经展现出惊人的少样本学习能力。只需给出简单提示,它们就能进行文本推理、编写故事、回答问题、编程......然鹅,LLM在复杂、多步推理任务上却常常败给人类,且苦苦挣扎无果。

对此,中国科学院和耶鲁大学的研究人员提出了一种「思维传播」(Thought Propagation)新框架,能够通过「类比思维」增强LLM的推理。

论文地址:https://arxiv.org/abs/2310.03965

「思维传播」灵感来自人类认知,即当遇到一个新问题时,我们经常将其与我们已经解决的类似问题进行比较,以推导出策略。因此,这一方法的核心便是,让LLM在解决输入的问题之前,探索与输入相关的「类似」问题。最后,它们的解决方案可以拿来即用,或提取有用计划的见解。

可以预见的是,「思维传播」在为LLM逻辑能力的固有限制提出的全新思路,让大模型像人类一样用「类比」方法解决难题。

LLM多步推理,败给人类

显而易见,LLM擅长根据提示进行基本推理,但在处理复杂的多步骤问题时仍有困难,比如优化、规划。反观人类,他们会汲取类似经验中的直觉来解决新问题。大模型无法做到这点,是由其固有的局限性决定的。因为LLM的知识完全来自于训练数据中的模式,无法真正理解语言或概念。因此,作为统计模型,它们很难进行复杂的组合泛化。

最最重要的是,LLM缺乏系统推理能力,无法像人类那样逐步推理,从而解决具有挑战性的问题。再加上,大模型的推理是局部的、「短视的」,因此LLM很难找到最佳解决方案,也很难在长时间范围内保持推理的一致性。

总之,大模型在数学证明、战略规划和逻辑推理方面的缺陷,主要源于2个核心问题:

  • 无法重用先前经验中的见解。人类从实践中积累了可重复使用的知识和直觉,有助于解决新问题。相比之下,LLM在处理每个问题时都是 「从0开始」,不会借鉴先前的解决方案。

  • 多步骤推理中的复合错误。人类会监控自己的推理链,并在必要时修改最初的步骤。但是LLM在推理的早期阶段所犯的错误会被放大,因为它们会把后面的推理引向错误的道路。

以上这些弱点,严重阻碍了LLM应对需要全局最优或长期规划的复杂挑战中的应用。

对此,研究人员提出了一种全新的解决方法——思维传播。

TP框架

通过类比思维,让LLM更像人类一样进行推理。在研究者看来,从0开始推理无法重复使用解决类似问题的见解,而且会在中间推理阶段出现错误累积。而「思维传播」可以探索与输入问题相关的类似问题,并从类似问题的解决方案中获得启发。

下图是「思维传播」(TP)与其他代表性技术的比较,对于输入问题 p,IO、CoT和ToT会从头开始推理,才得出解决方案s。

具体来说,TP包括了三个阶段:

  1. 提出类似问题:LLM通过提示生成一组与输入问题有相似之处的类似问题。这将引导模型检索潜在的相关先前经验。

  2. 解决类似问题:通过现有的提示技术,如CoT,让LLM解决每个类似的问题。

  3. 汇总解决方案:有2种不同的途径——根据类比解决方案,直接推断出输入问题的新解决方案;通过比较输入问题的类比解决方案,推导出高级计划或策略。

这样一来,大模型就可以重用先前的经验和启发式方法,还可以将其初始推理与类比解决方案进行交叉检查,以完善这些解决方案。

值得一提的是,「思维传播」与模型无关,可以在任何提示方法的基础上进行单个问题解决步骤。这一方法关键的新颖之处在于,激发LLM类比思维,以引导复杂的推理过程。

「思维传播」究竟能让LLM多像人类,还得实操结果来说话。中国科学院和耶鲁的研究人员在3个任务中进行了评估:

  • 最短路径推理:需要在图中找到节点之间的最佳路径需要全局规划和搜索。即使在简单的图上,标准技术也会失败。

  • 创意写作:生成连贯、有创意的故事是一个开放式的挑战。当给出高层次的大纲提示时,LLM通常会失去一致性或逻辑性。

  • LLM智能体规划:与文本环境交互的LLM智能体与长期战略方面举步维艰。它们的计划经常会出现「漂移」或陷入循环。

最短路径推理

最短路径推理任务中,现有的方法推理遇到的问题无法解决。虽然(a)中的图非常简单,但由于推理从0开始,这些方法只能让LLM找到次优解(b,c),甚至重复访问中间节点(d)。

如下是结合了TP和ToT使用的例子。由于中间推理步骤的错误累积,ToT (b) 无法解决 (a) 中的问题。基于类似问题的解决方案,TP (c) 完善了最初的次优解决方案,并最终找到了最优解决方案。

通过与基线比较,TP在处理最短路径任务中的性能显著提升了12%, 生成了最优和有效的最短路径。此外,由于OLR最低,与基线相比,TP生成的有效路径最接近最优路径。同时,研究人员还进一步研究了TP层数对最短路径任务复杂性和性能的影响。在不同设置下,1层TP的token成本与ToT类似。但是,1层TP在寻找最优最短路径方面,已经取得了非常有竞争力的性能。此外,与0层TP(IO)相比,1层TP的性能增益也非常显著。图5 (a) 显示了2层TP的token成本增加。

创意写作

下表2显示了TP和基线在GPT-3.5和GPT-4中的表现。在一致性上,TP都超过了基线。另外,在用户研究中,TP在创意写作中人类偏好提高了13%。

LLM智能体规划

在第三个任务评估中,研究人员使用ALFWorld游戏套件,在134个环境中实例化LLM智能体规划任务。TP在LLM智能体规划中任务完成率提高15%。这表明,在完成类似任务时,对成功规划的反思TP具有优越性。

通过以上的实验结果表明,「思维传播」可以推广到各种不同的推理任务中,并在所有这些任务中表现出色。

增强LLM推理的关键

「思维传播」模型为复杂的LLM推理提供了一种全新的技术。类比思维是人类解决问题能力的标志,它可以带来一系列系统性的优势,比如更高效的搜索和错误纠正。类似的,LLM也能通过提示类比思维,更好地克服自身弱点,如缺乏可重用的知识和级联的局部错误等。

然而,这些研究结果存在一些限制。高效地生成有用的类比问题并不容易,而且链式更长的类比推理路径可能会变得臃肿不堪。同时,控制和协调多步推理链也依旧十分困难。不过,「思维传播」还是通过创造性地解决LLM的推理缺陷,为我们提供了一个有趣的方法。随着进一步的发展,类比思维可能会使LLM的推理变得更加强大。而这也为在大语言模型中实现更像人类的推理指明了道路。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号