KNN与交叉验证(基础知识 + 实战代码)
创作时间:
作者:
@小白创作中心
KNN与交叉验证(基础知识 + 实战代码)
引用
CSDN
1.
https://blog.csdn.net/2301_79327545/article/details/140302026
KNN
近朱者赤,近墨者黑
既可以解决分类问题,也可以解决回归问题
- 回归问题:求出k个待测样本的平均值作为预测样本最终的预测值
1 样本距离公式
欧拉距离
两个样本对应特征值之差的平方的累加和再开根号
哈曼顿距离
两个样本对应特征值之差的累加和
明可夫斯基距离(p是一个超参数)
超参数:p是在计算前就已经设定好的数
2 特征标准化距离
避免了样本间距离一直被某些数值较大的特征所主导的问题。
z-score标准化
- s:标准差
- xmean:特征值的平均值
sklearn.preprocessing.StandardScaler
实战:
fit:只对样本训练集进行
交叉验证
- 将数据集切分成三部分:训练集、验证集、测试集
- 训练集:训练模型
- 验证集:用于模型的选择
- 测试集:最终评估
1 K折交叉验证
- 切分训练集:将训练数据集切分为k个互不相交的大小相同的子集
- 训练模型:用其中k-1个子集
- 验证模型:用余下的子集
- 将这一过程对可能的k中选择重复进行(这一过程使用的是同一组超参数)
- 计算交叉验证误差:计算k次的预测误差并对其求平均值。
在这个过程中要多试几组超参数,最后选择成绩最好的去测试数据。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier # KNN分类器
# 数据加载,展示图像
digits = datasets.load_digits()
X = digits.data #样本特征
y = digits.target #样本标签
# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=666)
# 交叉验证开始
from sklearn.model_selection import cross_val_score
best_k, best_p, best_score = 0, 0, 0
for k in range(2, 11): # 外层搜索k
for p in range(1, 6): # 内层搜索p
knn = KNeighborsClassifier(weights="distance", n_neighbors=k, p=p)
scores = cross_val_score(knn, X_train, y_train, cv=3, scoring='accuracy') # 3折交叉验证
score = np.mean(scores) # 当前这一组超参数在验证集上的平均得分
if score > best_score:
best_k, best_p, best_score = k, p, score
print("best_k=",best_k)
print("best_p=",best_p)
print("验证集上最好成绩:best_score=",best_score)
# 使用调好的超参数进行训练与测试
best_knn = KNeighborsClassifier(weights="distance", n_neighbors=2, p=2)
best_knn.fit(X_train, y_train)
best_knn.score(X_test, y_test) # 测试集上最终的分数
2 留一交叉验证
留一法:是K折交叉验证的特殊情形,即K=N,这里N是给定训练数据集的容量。
留一法不受随机样本划分方式的影响,最接近模型真正的性能指标。因为N个样本只有唯一的方式划分为N个子集——每个子集包含一个样本。
缺点:计算量巨大。经常在科研中使用。
3 实战:网格搜索调参
- 网格搜索?
- 网格搜索可以实现自动调参并返回最佳的参数组合
- 网格搜索,搜索的是参数,即在指定的参数范围内,依次调整参数,利用调整的参数训练学习器
- 底层还是用到了交叉搜索
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
# 加载数据集
digits = datasets.load_digits()
X = digits.data # 样本特征
y = digits.target # 样本标签
# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=666)
# 网格搜索
from sklearn.model_selection import GridSearchCV
# 组装待搜索的超参数
param_grid = [
{
"weights":["uniform"],
"n_neighbors":[i for i in range(1,11)],
},
{
"weights":["distance"],
"n_neighbors":[i for i in range(1,11)],
"p":[i for i in range(1,6)]
}
]
knn = KNeighborsClassifier()
grid_search = GridSearchCV(knn,param_grid,cv=3,n_jobs=1) # cv=3表示3折交叉验证 n_jobs=-1表示使用全部核
grid_search.fit(X_train,y_train) # 开始搜索, 搜索最佳超参数(很耗时!)
# print(grid_search.best_params_) # 输出最优超参数组合
# print(grid_search.best_score_) # 输出验证最佳成绩
# 携带最佳超参数组合的KNeighborsClassifier对象
best_knn = grid_search.best_estimator_
best_knn.fit(X_train, y_train) # 使用最佳超参数组合的分类器进行拟合训练
print("在测试集上最后总评估效果:",best_knn.score(X_test, y_test))
热门推荐
中文编程语言:创新编程方式的探索与实践
养狗必读:三个真实案例解读养狗相关的法律风险
基因调控网络分析 gene regulatory network
房屋噪音检测方法
峨眉山下温泉住宿全攻略:舒适住宿与温泉享受指南
400米矮个子如何提高跑步技巧(掌握正确姿势)
矮个子如何提高400米跑步技巧?15个实用技巧助你突破自我
Windows 10/11睡眠与休眠功能详解:如何设置与管理节能模式
米酒做红烧肉比黄酒香
户口迁出的问题如何解决?解决这个问题的思路是什么?
看指甲就知道身体好不好?出现这几个“信号”千万别忽视
增股和配股:股票发行两种常见方式的区别及应用
门窗业营销策略全攻略:从市场调研到数字化营销
了解癌症免疫逃逸的关键——从三E模型到三C框架
杨沫:一个“极真诚,极本色”的作家
高考英语语法知识点归纳总结:动词的时态和语态
血脂康的功效与作用:中医西医双重视角解析
通过「共识会」达成团队共识,上下对齐目标
视频文件太大怎么变小?不影响画质的四种方法
2024全美高性价比公立&私立大学排名Top30!应该怎么选?
兔子在生态系统中的作用分析
小伙打瘦脸针中毒暴瘦10斤!注射肉毒素有哪些风险和注意事项?
芝士蛋糕中的爱马仕:KUMO KUMO的品牌崛起与长红之道
租赁合同原件的获取与保存方式
租房合同不写中介可以吗?
杭钢股份澄清DeepSeek关系:仅提供硬件租赁服务
秋风起 枫叶红,古诗词里的枫叶,红枫染尽山林,岁月温柔了时光
洗碗机到底值不值得买?看看这些使用体验就知道
你知道吗?吃菠萝前用盐水泡一下,有助于增加甜度还是增加酸度?
UCCA“卢贝娜·希米德”个展:多维绘画展示非裔之声