庙算兵棋推演AI开发初探(4-调用AI模型)
创作时间:
作者:
@小白创作中心
庙算兵棋推演AI开发初探(4-调用AI模型)
引用
CSDN
1.
https://blog.csdn.net/sinat_27382047/article/details/135167041
本文将探讨如何在庙算兵棋推演平台上调用知识型AI模型。通过分析代码结构、环境配置要求以及模型调用过程中的关键文件和函数,帮助读者深入了解AI模型在兵棋推演中的应用。
前面讲了如何开展编写规则脚本型Agent(智能体)的方法,现在探究一下如何调用知识型(一般而言的训练出的模型)智能体的方法。
这次调用的是庙算平台的demo(网址见图)
下载了“知识+强化学习型”的压缩包,打开里面,进到【ai_demo】文件夹中是这样的:
这里面的agent.py文件也没什么大变化
import json
import os
import random
from .base_agent import BaseAgent
from .map import Map
from .feature_v1 import features as RL_FEATURE
from ai_demo import config, utils
from .model import PPO
from .select_points_fix_r_v7_2 import SelectPoint as SelectPoint
说明中写道
- 运行所需环境为sdk要求环境,本代码额外需要安装 pytorch,本代码pytorch的版本是2.0.1
- 本代码包括1个文件夹,2个文件,需要与 train_env 的目录同级
ai_demo 文件夹,提供示例ai智能体
train_red_demo.py 文件,提供与示例ai智能体相匹配的训练示例代码
test_red_demo.py 文件,提供与示例ai智能体相匹配的测试示例代码 - 赛道一的 ai_demo/agent.py 文件106行与136行,有2个todo需要注意;赛道二的 ai_demo/agent.py 文件102,有1个todo需要注意。
调用这个需要pytorch环境2.0.1。
PS,在自己环境上指定版本安装pytorch的命令:
123
然后我就奇怪,到底是哪里调用所谓的”训练模型“呢?
于是我发现了model.py这个文件
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Critic(nn.Module):
def __init__(self, state_dim_1, state_dim_2, hidden_dim):
super(Critic, self).__init__()
self.Linear11 = nn.Linear(state_dim_1, hidden_dim)
self.Linear21 = nn.Linear(hidden_dim, hidden_dim)
self.Linear31 = nn.Linear(hidden_dim, hidden_dim)
………………
看开头,看起来是这个东西。
里面实现了”演员-评论家“这两个类,并且实现了一个PPO类
然后我找在agnet.py文件里找PPO,发现在102行有如下内容
#### TODO 训练与测试的时候要注释掉, 提交的时候需要
#我方算子max 7
self.model = PPO(state_dim_1=1116, state_dim_2=252, hidden_dim=1024, action_dim=output_space,

gamma=config.float_gamma, lamda=config.float_lam, epochs=1000, eps=0.2, lr=config.float_lr)
self.model.load(itr=213)
###
然后发现目录”models“,里面有两个.pth 文件,原来这就是pytorch训练出的模型。
【Pytorch】一文详细介绍 pth格式 文件_pth文件-CSDN博客
转回来,看agent.py文件,这个文件是调用智能体的文件,讲规则智能体的时候我也讲到过
np_bopFeature, np_globalFeature = self.feature.get_feature(observation)
list_ops_what_logprob_value = self.model.total_forward(np_bopFeature, np_globalFeature, list_RedComplexActionMask)
list_ops_what_id = []
for tuple_what_prob_value in list_ops_what_logprob_value:
list_ops_what_id.append(tuple_what_prob_value[0])
assert len(list_ops_what_id) == len(self.list_red_ops_id)
model_actions = utils.cvtModelOutputToEnvActionComplex(list_ops_what_id=list_ops_what_id,
list_red_ops_id=self.list_my_ops_id,
list_my_ops_sub_type=self.list_my_ops_sub_type,
observation=self.observation,
int_seat=self.seat,
list_MovePos=list_MovePos,
Map=self.map,
int_point_num=self.int_point_num)
这里看到函数,发现是用来接收观测状态的
self.model.total_forward()
而这个函数,就是将模型输出过滤为可执行动作用的
model_actions = utils.cvtModelOutputToEnvActionComplex(
#在utils.py文件中
def cvtModelOutputToEnvActionComplex(list_ops_what_id: tuple,
list_red_ops_id, list_my_ops_sub_type,
observation,
int_seat,
list_MovePos,
Map,
int_point_num) -> list:
"""
功能:根据各个算子的动作ID等信息,计算环境可执行的动作
用法:用于网络输出动作之后
:param tuple_RedOperatorsID: RedAction函数的输出,红方各个算子的动作ID
:param list_RedOperatorsIDs:
:param list_RedOperatorsIDs:
:param observation: 主要用于根据算子ID获取obs当前bop类,进行计算路径
:param Map_map: core.utils.map 的 Map 类
:return: list_total_actions 默认值为[], 若非空则内有dict类型的bq可执行动作作为list内的元素
"""
最后返回的值就从这个model_actions列表出来
total_actions += model_actions
调用完毕。
相关链接:
中国人工智能学会 (caai.cn)
热门推荐
乙肝病毒的传播途径及常见误区
家用装机指南:英特尔AMD板U套装性能对决,千元到旗舰这样选最划算
新能源汽车与公共充电桩布局
日本面临沉没危机?专家预测:海沟积累巨大能量,未来或发生9级地震
药王孙思邈这篇《养生铭》,蕴含千古养生第一要诀,学到就是赚到!
权力与情感:乞伏炽磐与秃发皇后的关系探讨
女人吃桑葚的五大好处
哪些年份的“硬分币”,才有收藏价值呢?
膝关节清理术后康复程序全攻略
回民传统节日有哪些?深入探讨回族的节庆文化
蓝莓如何储存照片时间长
告别外卖!超绝家常黄焖鸡秘方大公开:一勺花生酱解锁灵魂风味?
健身房有氧和无氧运动怎么安排
旧手机改装成北斗卫星导航,不需要网络就能使用,定位精准,很实用
青光眼要怎么治疗
先“蜜糖”再“砒霜”,连续7个涨停后甩出2个跌停!这只股令人爱恨交加
软通动力华为外包员工的薪资结构是怎样的?
到异地工作,如何转移南京的医疗保险?
理化实验室设计装修要求有哪些?
设计的两面性:理性决策与感性表达
对肝脏损害大的中药
精神内涵与实践指导浅解“大道至简”
英雄联盟宇宙:探索符文之地的奥秘与英雄传奇
研究发现:爱吃辣,能降低女性高血压风险
你要坚强,是对抑郁症患者最无效的话
图解动态规划DP算法及经典题型
引发白内障的原因有哪些?分享白内障的原因和症状点击了解!
如何轻松实现横道图在线生成?最佳工具推荐
常见理财方式大盘点:收益与风险全解析
经济形势与股市:货币政策与财政政策的协同效应