月球南极尘埃等离子体环境特性研究
月球南极尘埃等离子体环境特性研究
月球探测是人类探索宇宙的重要一步,而月球表面的尘埃等离子体环境是影响探测任务成功实施的关键因素之一。月球表面缺乏大气和全球性磁场的保护,使得空间等离子体环境可以直接作用于月壤层,导致月壤中较小粒径的月尘带电后在月面附近形成复杂的尘埃等离子体环境。本文通过仿真研究揭示了月球南极尘埃等离子体环境的特性,为未来的月球探测任务提供了重要参考。
由于缺少大气和全球性磁场的保护,空间等离子体环境可直接作用于月球表面的月壤层,月壤中较小粒径的月尘带电后会在月面附近形成复杂的尘埃等离子体环境,影响探月任务的顺利实施。针对月球南极尘埃等离子体环境,本文利用SPIS (spacecraft plasma interactions software)软件,仿真研究了月球南极0—200 m高度范围的等离子体和月尘的空间分布情况及月面充电特性,揭示了月面附近尘埃等离子体环境特征及悬浮在月面附近的带电月尘对等离子体环境的影响。仿真结果与Apollo探测数据和Popel团队的理论数据吻合。
研究结果表明,空间电位随着高度升高而增加,月球南极附近0—10 m电位约为–40 V,在100 m处空间电位约为–20 V;在10 m以下高度范围内月尘密度为107.22—104.66m–3;月表附近尘埃等离子体中的电子密度为105.47m–3,离子密度为106.07m–3,并随着高度升高而增大;带电月尘会影响月尘的空间分布,主要是通过影响空间电场的分布,进而导致电子分布差异,对离子的影响不大。
图 1 仿真区域网格划分图
图 2 仿真过程中电流的变化
图 7 月尘空间密度分布
图 8 月尘空间电位分布
图 9 电子空间密度分布
图 10 离子空间密度分布
参考文献
[1] Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013J. Earth. Sci.38339Google Scholar
[2] Gaier J R 2007The Effects of Lunar Dust on EVA Systems During the Apollo MissionsNASA Technical Report TM-2005-213610
[3] Park J, Liu Y, Kihm K D, Hill E, Taylor L A 2006Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment(Houston: American Society of Civil Engineers) p1
[4] Horányi M, Szalay J R, Wang X 2024Phil. Trans. R. Soc. A.38220230075Google Scholar
[5] Sickafoose A A, Colwell J E, Horányi M, Robertson S 2001Geophys. Res. Space Phys.1068343Google Scholar
[6] Sickafoose A A, Colwell J E, Horányi M, Robertson S 2002Geophys. Res. Space Phys.107SMP 37-1Google Scholar
[7] Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002J. Geophys. Res. Planets.10715Google Scholar
[8] Colwell J E, Robertson S R, Horányi M, Wang X, Poppe A, Wheeler P 2009J. Aerosp. Eng.222Google Scholar
[9] Colwell J E, Batiste S, Horányi M, Robertson S, Sture S 2007Rev. Geophys.45RG2006Google Scholar
[10] Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016Geophys. Res. Lett.436103Google Scholar
[11] Popel S I, Zelenyi L M 2013J. Plasma Phys.79405Google Scholar
[12] Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Petrov O F 2014JETP Lett.99115Google Scholar
[13] Popel S I, Golub’ A P, Zelenyi L M 2014Eur. Phys. J. D.68245Google Scholar
[14] Popel S I, Golub’ A P, Lisin E A, Izvekova Y N, Atamaniuk B, Dol’nikov G G, Zelenyi L M 2016JETP Lett.103563Google Scholar
[15] Popel S I, Golub’ A P, Zelenyi L M, Horányi M 2017JETP Lett.105635Google Scholar
[16] Popel S I, Zelenyi L M, Dubinskii A Y 2018Planet. Space Sci.15671Google Scholar
[17] Popel S I, Zelenyi L M 2014J. Plasma. Phys.80885Google Scholar
[18] Anuar A K 2013Ph. D. Dissertation(United Kingdom: Lancaster University
[19] Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008J. Geophys. Res. Space Phys.113A10104Google Scholar
[20] Robertson S H, Sternovsky Z, Horanyi M 2010IEEE. Trans. Plasma. Sci.38766Google Scholar
[21] Hartzell C M, Bellan P, Bodewits D, Delzanno G L, Hirabayashi M, Hyde T, Israelsson U 2023Acta. Astronaut.20789Google Scholar
[22] Xie L H, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Yu S, Feng Y, Guo D, Yu S 2020Geophys. Res. Lett.47e2020GL089593Google Scholar
[23] Zhao C X, Gan H, Xie L H, Wang Y, Wang Y J, Hong J Y 2023Sci. China Earth Sci.662278Google Scholar
[24] Hess S L G, Sarrailh P, Matéo-Vélez J C, Jeanty-Ruard B, Cipriani F, Forest J, Rodgers D 2015IEEE. Trans. Plasma. Sci.432799-2807Google Scholar
[25] Dyadechkin S, Kallio E, Wurz P 2015J. Geophys. Res. Space Physics.1201589Google Scholar
[26] SPIS-DUST Detailed Design Document and Software User Manual_v2, Sarrailh P, Hess S, Mateo Velez J C, Jeanty Ruard B, Forest J https://www.spis.org/software/spis/documentation/ [2024-4-30]
[27] Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008J. Geophys. Res. Space Phys.113A09102Google Scholar
[28] Williams J P, Paige D A, Greenhagen B T, Sefton-Nash E 2017Icarus.283300Google Scholar
[29] De Rosa D, Bussey B, Cahill J T, Lutz T, Crawford I A, Hackwill T, Carpenter J D 2012Planet. Space Sci.74224Google Scholar
[30] Freeman J W, Ibrahim M 1975Lunar Science Institute, Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient MoonLake Geneva, Wis, September 30–October 4, 1974 p103