问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

GAM全局注意力机制:保留信息以增强通道与空间的相互作用

创作时间:
作者:
@小白创作中心

GAM全局注意力机制:保留信息以增强通道与空间的相互作用

引用
1
来源
1.
https://developer.aliyun.com/article/1651559

本文介绍了一种名为GAM(Global Attention Mechanism)的全局注意力机制,该机制通过3D排列和重新设计的子模块,能够在通道和空间方面保留信息,避免了先前方法中由于信息减少和维度分离而导致的全局空间-通道交互丢失的问题。

GAM注意力原理

整体结构

GAM采用了来自CBAM的顺序通道-空间注意力机制,并重新设计了子模块。给定输入特征图$F_{1} \in \mathbb{R}^{C \times H \times W}$,中间状态$F_{2}$和输出$F_{3}$的定义为:

  • $F_{2} = M_{c}(F_{1}) \otimes F_{1}$
  • $F_{3} = M_{s}(F_{2}) \otimes F_{2}$
    其中$M_{c}$和$M_{s}$分别是通道和空间注意力图,$\otimes$表示元素级乘法。

通道注意力子模块

使用3D排列来保留跨三个维度的信息,然后通过两层MLP(多层感知机)放大跨维度的通道-空间依赖性。MLP是具有压缩比$r$的编码器-解码器结构,与BAM相同。

空间注意力子模块

为了关注空间信息,使用两个卷积层进行空间信息融合,并使用与通道注意力子模块相同的压缩比$r$(与BAM相同)。同时,由于最大池化会减少信息并产生负面影响,所以移除了池化以进一步保留特征图。为了防止参数显著增加,在ResNet50中采用了具有通道打乱的组卷积。

优势

  1. 保留信息:通过3D排列和重新设计的子模块,GAM能够在通道和空间方面保留信息,避免了先前方法中由于信息减少和维度分离而导致的全局空间-通道交互的丢失。
  2. 放大交互:能够放大“全局”跨维度交互,捕获所有三个维度(通道、空间宽度和空间高度)上的重要特征,从而增强了跨维度的交互能力。
  3. 性能提升:在CIFAR-100和ImageNet-1K数据集上的评估表明,GAM稳定地优于其他几种近期的注意力机制,无论是在ResNet还是轻量级MobileNet上,都能提高性能。例如,在ImageNet-1K数据集上,对于ResNet18,GAM以更少的参数和更高的效率优于ABN。

参考文献

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号