问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

R语言多元线性回归时间序列模型详解

创作时间:
作者:
@小白创作中心

R语言多元线性回归时间序列模型详解

引用
51CTO
1.
https://blog.51cto.com/u_16213640/13459143

R语言实现多元线性回归主要利用lm()函数。熟悉其他统计回归量的函数,对做回归分析也是很有帮助的。

  • anova(m):ANOVA表
  • coefficients(m):模型的系数
  • coef(m):与coefficients(m)一样
  • confint(m):回归系数的置信区间
  • deviance(m):残差平方和
  • effects(m):正交效应向量(Vector of orthogonal effects)
  • fitted(m):拟合的Y值向量(Vector of fitted y values)
  • residuals(m):模型残差
  • resid(m):与residuals(m)一样
  • summary(m):关键统计量,例如R2、F统计量和残差标准差(σ)
  • vcov(m):主参数的协防差矩阵

以下是R做多元线性回归的几个基本步骤:

  1. 读入数据,R-STUDIO直接有按钮,否则就
zsj <- read.csv("D:/Paper/data/zsj.csv")

数据一般从excel的CSV或者txt里读取,实现整理好以符合R的数据框的结构

  1. 画相关图选择回归方程的形式
plot(Y~X1);abline(lm(Y~X1))
plot(Y~X2);abline(lm(Y~X2))

可见X1与Y的关系是明显的线性的,X2也类似此处省略

  1. 做回归,并检视回归结果
lm.test<-lm(Y~X1+X2,data=zsj)
summary(lm.test)
Call:
lm(formula = Y ~ X1 + X2, data = zsj)

Residuals:
Min 1Q Median 3Q Max
-0.21286 -0.05896 -0.01450 0.05556 0.30795

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0931750 0.0109333 8.522 5.85e-16 ***
X1 0.0109935 0.0003711 29.625 < 2e-16 ***
X2 0.0099941 0.0010459 9.555 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08109 on 327 degrees of freedom
Multiple R-squared: 0.7953, Adjusted R-squared: 0.7941
F-statistic: 635.3 on 2 and 327 DF, p-value: < 2.2e-16

可见各项显著性检验都是得到通过的

  1. 用残差分析剔除异常点
plot(lm.test,which=1:4)

得到的四个图依次为:
4.1 普通残差与拟合值的残差图
4.2 正态QQ的残差图(若残差是来自正态总体分布的样本,则QQ图中的点应该在一条直线上)
4.3 标准化残差开方与拟合值的残差图(对于近似服从正态分布的标准化残差,应该有95%的样本点落在[-2,2]的区间内。这也是判断异常点的直观方法)
4.4 cook统计量的残差图(cook统计量值越大的点越可能是异常值,但具体阀值是多少较难判别)

从图中可见,54,65,295三个样本存在异常,需要剔除。

  1. 检验异方差
    5.1 GQtest,H0(误差平方与自变量,自变量的平方和其交叉相都不相关),p值很小时拒绝H0,认为上诉公式有相关性,存在异方差
res.test<-residuals(lm.test)
library(lmtest)
gqtest(lm.test)
Goldfeld-Quandt test

data: lm.test
GQ = 0.9353, df1 = 162, df2 = 162, p-value = 0.6647

5.2 BPtest,H0(同方差),p值很小时认为存在异方差

bptest(lm.test)
studentized Breusch-Pagan test

data: lm.test
BP = 3.0757, df = 2, p-value = 0.2148

两个检验都可以看出异方差不存在,不过为了总结所有情况这里还是做了一下修正。。

  1. 修正异方差
    修正的方法选择FGLS即可行广义最小二乘
    6.1 修正步骤
    6.1.1 将y对xi求回归,算出res--u
    6.1.2 计算log(u^2)
    6.1.3 做log(u^2)对xi的辅助回归 log(u^2),得到拟合函数g=b0+b1x1+..+b2x2
    6.1.4 计算拟合权数1/h=1/exp(g),并以此做wls估计
lm.test2<-lm(log(resid(lm.test)^2)~X1+X2,data=zsj)
lm.test3<-lm(Y~X1+X2,weights=1/exp(fitted(lm.test2)),data=zsj)
summary(lm.test3)

这里就不再贴回归结果了

  1. 检验多重共线性
    7.1 计算解释变量相关稀疏矩阵的条件数k,k<100多重共线性程度很小,100<k<1000较强,>1000严重
XX<-cor(zsj[5:6])
kappa(XX)
[1] 2.223986

7.2 寻找共线性强的解释变量组合

eigen(XX)
$values
[1] 1.3129577 0.6870423

$vectors
[,1] [,2]
[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068
  1. 修正多重共线性---逐步回归法
step(lm.test)
Start: AIC=-1655.03
Y ~ X1 + X2

Df Sum of Sq RSS AIC
<none> 2.1504 -1655.0
- X2 1 0.6005 2.7509 -1575.8
- X1 1 5.7714 7.9218 -1226.7

Call:
lm(formula = Y ~ X1 + X2, data = zsj)

Coefficients:
(Intercept) X1 X2
0.093175 0.010994 0.009994

可见X2,X1都不去掉的时候AIC值最小,模型最佳。

ps2:step中可进行参数设置:direction=c("both","forward","backward")来选择逐步回归的方向,默认both,forward时逐渐增加解释变两个数,backward则相反。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号