numpy学习笔记14:模拟随机游走过程(一次实验)
创作时间:
作者:
@小白创作中心
numpy学习笔记14:模拟随机游走过程(一次实验)
引用
CSDN
1.
https://blog.csdn.net/fen_fen/article/details/146375615
numpy学习笔记14:模拟随机游走过程(一次实验)
随机游走是一个对象在离散时间步中的随机移动,每次移动的方向和步长由概率决定。在用户提供的代码中,步长数组steps的每个元素是-1或1,代表向左或向右移动一步。np.random.choice的作用就是生成这样的随机步长序列。
随机游走是一种数学统计模型,其中的每一步方向和大小都是随机的。下面使用 NumPy 模拟一维和二维的随机游走过程:
1.代码示例
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def simulate_1d_random_walk(num_steps):
"""
模拟一维随机游走
:param num_steps: 游走的步数
:return: 一维随机游走的位置数组
"""
steps = np.random.choice([-1, 1], size=num_steps)
positions = np.cumsum(steps)
return positions
def simulate_2d_random_walk(num_steps):
"""
模拟二维随机游走
:param num_steps: 游走的步数
:return: 二维随机游走的 x 和 y 坐标数组
"""
steps_x = np.random.choice([-1, 1], size=num_steps)
steps_y = np.random.choice([-1, 1], size=num_steps)
positions_x = np.cumsum(steps_x)
positions_y = np.cumsum(steps_y)
return positions_x, positions_y
# 模拟一维随机游走
num_steps_1d = 1000
positions_1d = simulate_1d_random_walk(num_steps_1d)
# 绘制一维随机游走轨迹
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(positions_1d)
plt.title('一维随机游走')
plt.xlabel('步数')
plt.ylabel('位置')
# 模拟二维随机游走
num_steps_2d = 1000
positions_x, positions_y = simulate_2d_random_walk(num_steps_2d)
# 绘制二维随机游走轨迹
plt.subplot(1, 2, 2)
plt.plot(positions_x, positions_y)
plt.title('二维随机游走')
plt.xlabel('X 位置')
plt.ylabel('Y 位置')
plt.tight_layout()
plt.show()
- simulate_1d_random_walk函数:该函数通过
np.random.choice从[-1, 1]中随机选择num_steps个步长,然后使用np.cumsum计算累积和,得到一维随机游走的位置数组。 - simulate_2d_random_walk函数:分别为 x 和 y 方向生成随机步长,再分别计算它们的累积和,得到二维随机游走的 x 和 y 坐标数组。
- 可视化部分:使用
matplotlib绘制一维和二维随机游走的轨迹图。
2. 分步解释
(1) 生成随机步长
steps = np.random.choice([-1, 1], size=1000)
- 功能:生成包含 1000 个元素的数组,每个元素随机为-1(向左移动)或1(向右移动)。
- 概率:默认均匀分布,即-1和1出现的概率均为 50%。
(2) 计算累积位移
positions = np.cumsum(steps)
- 功能:通过
np.cumsum()对步长数组逐步累加,生成随时间变化的位置序列
(3) 可视化结果
plt.plot(positions)
- 输出:绘制位置随时间变化的折线图,展示粒子的随机运动轨迹。
3. 示例输出图形
横轴为步数,纵轴为位置,展示粒子在直线上的随机移动轨迹。
4. 扩展分析
(1) 多次模拟实验的统计特性
# 模拟100次随机游走,观察平均行为
n_simulations = 100
final_positions = [np.sum(np.random.choice([-1,1], 1000)) for _ in range(n_simulations)]
plt.hist(final_positions, bins=20, density=True)
plt.title("Distribution of Final Positions (100 Simulations)")
plt.xlabel("Final Position")
plt.ylabel("Probability Density")
plt.show()
- 结果:最终位置近似服从正态分布(中心极限定理)。
(2) 均方位移分析
5. 关键参数调整
- 非对称概率(如向右概率 70%):
steps = np.random.choice([-1,1], size=1000, p=[0.3, 0.7])
- 可变步长(如步长为 0.5 或 2):
steps = np.random.choice([-0.5, 2], size=1000)
6. 应用场景
- 金融价格模型:模拟股票价格的随机波动。
- 分子扩散:研究微粒在液体中的布朗运动。
- 算法测试:评估路径规划或搜索算法的性能。
通过上述代码和分析,你可以灵活模拟不同条件下的随机游走,并深入理解其统计特性!
热门推荐
日本经验:人口减少如何影响政策?
治愈系巅峰!豆瓣9.7分零差评动漫
人口负增长下的养老困局:挑战与应对
56㎡的一居室单身公寓,小众的法式风格,营造优雅的清爽气氛!
小卧室设计:告别榻榻米,开启高效收纳新模式
56㎡小户型公寓简约风,装下独立阳台、衣帽间,厉害了!
HDR——细致分类与最佳操作
如何正确开启和使用HDR技术提升摄影与视频效果
羽绒服配靴子:既保暖又时尚的冬季穿搭指南
馨子演绎代战公主:从爱生恨到协理后宫
南宁到新乡高铁最新动态:两趟高铁可供选择,最快10小时直达
基因诊断:揭秘你的健康密码
下一代DNA测序技术:从大阪大学突破到隐私保护挑战
泰戈尔诗句:一剂治愈现代人内心的良药
天津夜游新宠:五大道的迷人夜色
天津夜景:百年历史与现代繁华的交响
泰戈尔和徐志摩的自然美学:从宇宙到诗意
泰戈尔:用诗歌点亮生命的光
泰戈尔与莫言:文化传承的力量
中年兄弟姐妹如何保持亲密?这两个定律很关键
山东钢铁成一元股,背后真相揭秘!
邓普顿教你如何玩转低价股投资
从中科曙光异动看低价股投资机会:资金流向与基本面分析
达特茅斯会议:人工智能诞生的历史瞬间
从图灵测试到深度学习:AI的逆袭之路
冬季黄山游,阿洁带你玩转5天4夜
洛洛历险记:从游戏高手到机战王的蜕变之路
《哪吒怎么读》:神话背后的成长与自我认同启示
洛洛重生记:游戏中的逆袭之路
德甲积分榜:药厂只差3分夺冠,拜仁惨遭逆转,凯恩命运使然