Transformers入门指南:从零开始理解Transformer模型
创作时间:
作者:
@小白创作中心
Transformers入门指南:从零开始理解Transformer模型
引用
1
来源
1.
https://developer.aliyun.com/article/1635093
Transformer模型自2017年提出以来,迅速成为自然语言处理(NLP)领域的主流模型,广泛应用于机器翻译、文本生成、情感分析等多个任务。本文旨在为初学者提供一个全面的Transformers入门指南,介绍Transformer模型的基本概念、结构组成及其相对于传统RNN和CNN模型的优势。
Transformer模型概述
Transformer模型最初是在论文《Attention is All You Need》中提出的,其核心思想是完全基于自注意力机制(Self-Attention)来处理序列数据,摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)的顺序处理方式。这种设计使得Transformer在处理长序列数据时具有更高的并行性和更好的性能。
Transformer模型的基本概念
自注意力机制(Self-Attention):
- 自注意力机制允许模型在处理序列中的每个位置时,考虑整个序列的信息,而不是仅仅依赖前一个或后一个位置的信息。
- 通过计算每个位置的权重,自注意力机制可以动态地关注序列中的不同部分,从而捕获长距离依赖关系。
编码器-解码器结构:
- Transformer模型采用编码器-解码器结构,其中编码器负责将输入序列转换为高维表示,解码器则根据这些表示生成输出序列。
- 编码器和解码器均由多个相同的层堆叠而成,每个层包含自注意力机制和前馈神经网络(Feed-Forward Neural Network, FFNN)。
位置编码(Positional Encoding):
- 由于自注意力机制本身不包含位置信息,Transformer通过添加位置编码来保留序列的位置信息。
- 位置编码可以是固定的(如正弦波形式)或可学习的(如通过额外的嵌入层)。
Transformer模型的结构组成
编码器(Encoder):
- 编码器由多个相同的层组成,每个层包含两个子层:自注意力机制和前馈神经网络。
- 自注意力机制允许编码器在处理每个位置时,关注整个输入序列的信息。
- 前馈神经网络对每个位置的表示进行非线性变换。
解码器(Decoder):
- 解码器也由多个相同的层组成,每个层包含三个子层:自注意力机制、编码器-解码器注意力机制和前馈神经网络。
- 自注意力机制允许解码器在生成每个位置的输出时,关注已生成的部分输出。
- 编码器-解码器注意力机制允许解码器关注编码器生成的高维表示。
- 前馈神经网络对每个位置的表示进行非线性变换。
残差连接和层归一化:
- 每个子层后面都跟随一个残差连接(Residual Connection)和一个层归一化(Layer Normalization)。
- 残差连接有助于梯度传递,防止梯度消失或爆炸。
- 层归一化有助于稳定训练过程,加速收敛。
Transformer模型的优势
并行性:
- 相比于RNN,Transformer可以并行处理整个序列,大大提高了训练速度。
长距离依赖:
- 自注意力机制使得Transformer能够有效地捕获长距离依赖关系,这对于许多NLP任务至关重要。
灵活性:
- Transformer模型可以很容易地扩展到更大的规模,通过增加层数和隐藏单元数来提高模型容量。
代码示例
以下是一个简单的Transformer模型的PyTorch实现示例:
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return x
class TransformerModel(nn.Module):
def __init__(self, ntoken, d_model, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(d_model)
self.encoder = nn.Embedding(ntoken, d_model)
self.transformer = nn.Transformer(d_model, nhead, nlayers, nlayers, nhid, dropout)
self.decoder = nn.Linear(d_model, ntoken)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, src, has_mask=True):
if has_mask:
device = src.device
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = self.generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
else:
self.src_mask = None
src = self.encoder(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
output = self.transformer(src, src, self.src_mask)
output = self.decoder(output)
return output
# 示例使用
ntokens = 10000 # 词汇表大小
d_model = 512 # 嵌入维度
nhead = 8 # 多头注意力机制的头数
nhid = 2048 # 前馈网络的维度
nlayers = 6 # 编码器和解码器的层数
dropout = 0.5 # Dropout概率
model = TransformerModel(ntokens, d_model, nhead, nhid, nlayers, dropout)
src = torch.randint(0, ntokens, (10, 32)) # (序列长度, 批量大小)
output = model(src)
print(output.shape) # 输出形状应为 (序列长度, 批量大小, 词汇表大小)
总结
Transformer模型凭借其独特的自注意力机制和并行处理能力,在NLP领域取得了巨大的成功。通过本文的介绍,希望初学者能够对Transformer模型有一个全面的理解,并能够在实际项目中应用这一强大的工具。未来的工作中,我们还将继续探索Transformer模型的更多应用场景和技术细节,以进一步提升其性能和适用范围。希望本文能为你在NLP领域的学习之旅提供一些有价值的参考。
热门推荐
全民营养周推荐:高血压患者科学饮食
中医养生新突破:高血压治疗迎来新希望
FDA新批降压神药,高血压患者福音!
大理双廊古镇:户外运动与休闲度假的完美融合
冬樱绽放!无量山四日游攻略
大理洱海冬日旅拍攻略:红嘴鸥来袭!
苏州4天3晚古镇深度游攻略:六大古镇精华路线全解析
刑事控告案件的几个难点
福州鼓山+厦门鼓浪屿:两天一夜亲子游完全攻略
福州到厦门亲子游:打卡必去的历史文化景点
冬至数九,古老习俗背后的深意与影响
“四九”的北京还冷吗?
周末亲子活动:车厘子核发芽大挑战
冬季在家种车厘子树,乐趣无穷!
车厘子种植正当时:最佳时节与关键技术详解
'点三三'智慧之火:围棋的魅力与教育价值
少林少林 一部电影加持下的“功夫郑州”
从农村少年到影视巨星:王宝强的事业辉煌与情感沧桑
中山板芙镇深湾小学传承武术与民乐,操场上“笛武飞扬”丨武术进校园
太极拳的精髓——松胯:90%的人都忽视了这个技巧!
成龙:从功夫小子到国际巨星的传奇历程
长沙夜生活的双子星:五一商圈VS扬帆夜市
遵义会议90周年:贵州红色旅游迎来新机遇
跟着导游丹丹/小王玩转贵州:从黄果树到青岩古镇!
清蒸&煮炖,猪肉营养大揭秘!
《舌尖上的中国4》推荐:猪肉烹饪秘籍
鼓浪屿八卦楼:百年建筑的重生与文化传承
户部山古建:徐州文旅新宠
徐州秋冬三日游:从自然到人文的温暖之旅
探秘徐州城下城遗址博物馆:古今交错的时空之旅