Transformers入门指南:从零开始理解Transformer模型
创作时间:
作者:
@小白创作中心
Transformers入门指南:从零开始理解Transformer模型
引用
1
来源
1.
https://developer.aliyun.com/article/1635093
Transformer模型自2017年提出以来,迅速成为自然语言处理(NLP)领域的主流模型,广泛应用于机器翻译、文本生成、情感分析等多个任务。本文旨在为初学者提供一个全面的Transformers入门指南,介绍Transformer模型的基本概念、结构组成及其相对于传统RNN和CNN模型的优势。
Transformer模型概述
Transformer模型最初是在论文《Attention is All You Need》中提出的,其核心思想是完全基于自注意力机制(Self-Attention)来处理序列数据,摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)的顺序处理方式。这种设计使得Transformer在处理长序列数据时具有更高的并行性和更好的性能。
Transformer模型的基本概念
自注意力机制(Self-Attention):
- 自注意力机制允许模型在处理序列中的每个位置时,考虑整个序列的信息,而不是仅仅依赖前一个或后一个位置的信息。
- 通过计算每个位置的权重,自注意力机制可以动态地关注序列中的不同部分,从而捕获长距离依赖关系。
编码器-解码器结构:
- Transformer模型采用编码器-解码器结构,其中编码器负责将输入序列转换为高维表示,解码器则根据这些表示生成输出序列。
- 编码器和解码器均由多个相同的层堆叠而成,每个层包含自注意力机制和前馈神经网络(Feed-Forward Neural Network, FFNN)。
位置编码(Positional Encoding):
- 由于自注意力机制本身不包含位置信息,Transformer通过添加位置编码来保留序列的位置信息。
- 位置编码可以是固定的(如正弦波形式)或可学习的(如通过额外的嵌入层)。
Transformer模型的结构组成
编码器(Encoder):
- 编码器由多个相同的层组成,每个层包含两个子层:自注意力机制和前馈神经网络。
- 自注意力机制允许编码器在处理每个位置时,关注整个输入序列的信息。
- 前馈神经网络对每个位置的表示进行非线性变换。
解码器(Decoder):
- 解码器也由多个相同的层组成,每个层包含三个子层:自注意力机制、编码器-解码器注意力机制和前馈神经网络。
- 自注意力机制允许解码器在生成每个位置的输出时,关注已生成的部分输出。
- 编码器-解码器注意力机制允许解码器关注编码器生成的高维表示。
- 前馈神经网络对每个位置的表示进行非线性变换。
残差连接和层归一化:
- 每个子层后面都跟随一个残差连接(Residual Connection)和一个层归一化(Layer Normalization)。
- 残差连接有助于梯度传递,防止梯度消失或爆炸。
- 层归一化有助于稳定训练过程,加速收敛。
Transformer模型的优势
并行性:
- 相比于RNN,Transformer可以并行处理整个序列,大大提高了训练速度。
长距离依赖:
- 自注意力机制使得Transformer能够有效地捕获长距离依赖关系,这对于许多NLP任务至关重要。
灵活性:
- Transformer模型可以很容易地扩展到更大的规模,通过增加层数和隐藏单元数来提高模型容量。
代码示例
以下是一个简单的Transformer模型的PyTorch实现示例:
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return x
class TransformerModel(nn.Module):
def __init__(self, ntoken, d_model, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(d_model)
self.encoder = nn.Embedding(ntoken, d_model)
self.transformer = nn.Transformer(d_model, nhead, nlayers, nlayers, nhid, dropout)
self.decoder = nn.Linear(d_model, ntoken)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, src, has_mask=True):
if has_mask:
device = src.device
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = self.generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
else:
self.src_mask = None
src = self.encoder(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
output = self.transformer(src, src, self.src_mask)
output = self.decoder(output)
return output
# 示例使用
ntokens = 10000 # 词汇表大小
d_model = 512 # 嵌入维度
nhead = 8 # 多头注意力机制的头数
nhid = 2048 # 前馈网络的维度
nlayers = 6 # 编码器和解码器的层数
dropout = 0.5 # Dropout概率
model = TransformerModel(ntokens, d_model, nhead, nhid, nlayers, dropout)
src = torch.randint(0, ntokens, (10, 32)) # (序列长度, 批量大小)
output = model(src)
print(output.shape) # 输出形状应为 (序列长度, 批量大小, 词汇表大小)
总结
Transformer模型凭借其独特的自注意力机制和并行处理能力,在NLP领域取得了巨大的成功。通过本文的介绍,希望初学者能够对Transformer模型有一个全面的理解,并能够在实际项目中应用这一强大的工具。未来的工作中,我们还将继续探索Transformer模型的更多应用场景和技术细节,以进一步提升其性能和适用范围。希望本文能为你在NLP领域的学习之旅提供一些有价值的参考。
热门推荐
新一和小兰:一段跨越30年的纯真爱情
城门挂春联:文化传承新时尚
韦斯琴教你如何写出惊艳春节对联
南京约拍热潮:捕捉最美金陵季
基层党员走访企业 搭建党群企“连心桥”
高淳螃蟹节+森林音乐会:南京秋游打卡攻略
南京秋末冬初,这些美景你不能错过!
春天来啦!南京樱花季旅游攻略
冬日南京:邂逅明孝陵雪景,品味六朝古都的温暖时光
家庭版清蒸麻辣香肠的绝妙制作指南
秋冬养生新宠:清炖甲鱼
2024“新血压标准”公布:不再是120-80mmHg
春日餐桌上的美味:桃花鳖的养生之道
清炖甲鱼:滋补又美味的家常做法
常德市河洲产业教你挑选优质甲鱼
红烧甲鱼火了!零基础也能做大师级
明十三陵计划2030年前实现全面开放
健康过年 | 冬季泡脚的正确打开方式
九华山祇园寺:还阴债仪式的神秘与庄严
九华山祇园寺:古刹中的皇家宫殿风
苏轼的知性朋友圈:三位才女的风雅人生
红灯笼映红京城夜空,2025年春节景观布置亮点纷呈
沃尔沃:三点式安全带背后的传奇故事
佩戴黄金有着怎样的益处?这些益处如何衡量?
养老保险跨省市转移流程及为什么不建议转移?
新一轮人口调查开始,9个人口大省面临增长分化
AI赋能个性化饮食管理:IBS治疗迎来新突破
益生菌和FMT:IBS治疗的新希望
葡萄膨果转色期管理全攻略:七大妙招助力丰产优质
心理疗法:IBS治疗的新选择