Transformers入门指南:从零开始理解Transformer模型
创作时间:
作者:
@小白创作中心
Transformers入门指南:从零开始理解Transformer模型
引用
1
来源
1.
https://developer.aliyun.com/article/1635093
Transformer模型自2017年提出以来,迅速成为自然语言处理(NLP)领域的主流模型,广泛应用于机器翻译、文本生成、情感分析等多个任务。本文旨在为初学者提供一个全面的Transformers入门指南,介绍Transformer模型的基本概念、结构组成及其相对于传统RNN和CNN模型的优势。
Transformer模型概述
Transformer模型最初是在论文《Attention is All You Need》中提出的,其核心思想是完全基于自注意力机制(Self-Attention)来处理序列数据,摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)的顺序处理方式。这种设计使得Transformer在处理长序列数据时具有更高的并行性和更好的性能。
Transformer模型的基本概念
自注意力机制(Self-Attention):
- 自注意力机制允许模型在处理序列中的每个位置时,考虑整个序列的信息,而不是仅仅依赖前一个或后一个位置的信息。
- 通过计算每个位置的权重,自注意力机制可以动态地关注序列中的不同部分,从而捕获长距离依赖关系。
编码器-解码器结构:
- Transformer模型采用编码器-解码器结构,其中编码器负责将输入序列转换为高维表示,解码器则根据这些表示生成输出序列。
- 编码器和解码器均由多个相同的层堆叠而成,每个层包含自注意力机制和前馈神经网络(Feed-Forward Neural Network, FFNN)。
位置编码(Positional Encoding):
- 由于自注意力机制本身不包含位置信息,Transformer通过添加位置编码来保留序列的位置信息。
- 位置编码可以是固定的(如正弦波形式)或可学习的(如通过额外的嵌入层)。
Transformer模型的结构组成
编码器(Encoder):
- 编码器由多个相同的层组成,每个层包含两个子层:自注意力机制和前馈神经网络。
- 自注意力机制允许编码器在处理每个位置时,关注整个输入序列的信息。
- 前馈神经网络对每个位置的表示进行非线性变换。
解码器(Decoder):
- 解码器也由多个相同的层组成,每个层包含三个子层:自注意力机制、编码器-解码器注意力机制和前馈神经网络。
- 自注意力机制允许解码器在生成每个位置的输出时,关注已生成的部分输出。
- 编码器-解码器注意力机制允许解码器关注编码器生成的高维表示。
- 前馈神经网络对每个位置的表示进行非线性变换。
残差连接和层归一化:
- 每个子层后面都跟随一个残差连接(Residual Connection)和一个层归一化(Layer Normalization)。
- 残差连接有助于梯度传递,防止梯度消失或爆炸。
- 层归一化有助于稳定训练过程,加速收敛。
Transformer模型的优势
并行性:
- 相比于RNN,Transformer可以并行处理整个序列,大大提高了训练速度。
长距离依赖:
- 自注意力机制使得Transformer能够有效地捕获长距离依赖关系,这对于许多NLP任务至关重要。
灵活性:
- Transformer模型可以很容易地扩展到更大的规模,通过增加层数和隐藏单元数来提高模型容量。
代码示例
以下是一个简单的Transformer模型的PyTorch实现示例:
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return x
class TransformerModel(nn.Module):
def __init__(self, ntoken, d_model, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(d_model)
self.encoder = nn.Embedding(ntoken, d_model)
self.transformer = nn.Transformer(d_model, nhead, nlayers, nlayers, nhid, dropout)
self.decoder = nn.Linear(d_model, ntoken)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, src, has_mask=True):
if has_mask:
device = src.device
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = self.generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
else:
self.src_mask = None
src = self.encoder(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
output = self.transformer(src, src, self.src_mask)
output = self.decoder(output)
return output
# 示例使用
ntokens = 10000 # 词汇表大小
d_model = 512 # 嵌入维度
nhead = 8 # 多头注意力机制的头数
nhid = 2048 # 前馈网络的维度
nlayers = 6 # 编码器和解码器的层数
dropout = 0.5 # Dropout概率
model = TransformerModel(ntokens, d_model, nhead, nhid, nlayers, dropout)
src = torch.randint(0, ntokens, (10, 32)) # (序列长度, 批量大小)
output = model(src)
print(output.shape) # 输出形状应为 (序列长度, 批量大小, 词汇表大小)
总结
Transformer模型凭借其独特的自注意力机制和并行处理能力,在NLP领域取得了巨大的成功。通过本文的介绍,希望初学者能够对Transformer模型有一个全面的理解,并能够在实际项目中应用这一强大的工具。未来的工作中,我们还将继续探索Transformer模型的更多应用场景和技术细节,以进一步提升其性能和适用范围。希望本文能为你在NLP领域的学习之旅提供一些有价值的参考。
热门推荐
庄子《逍遥游》中的四大人生境界
甲醛10种性价比去除方案!实用性超高,4000字讲透,拒绝智商税!
热水器工作原理与使用要点:各类热水器操作手册
玉乌龟摆件寓意是什么,玉乌龟摆放位置,玉乌龟挂件寓意是什么
荧光增白剂的原理、应用与行业发展趋势
为何武王伐纣一战就灭亡商朝,而东周那么弱却能维持几百年国祚?
清华×中国航天:二维半导体材料“勇闯”太空,解锁宇宙电子器件新可能
2025年事业编报考全流程指南:从报名到入职
如何挑选拥有充足磁盘空间的电脑配置方案?
中餐馆设计的目的是什么?如何提高餐饮体验?
如何快速学习Excel和Word
解锁汽车改装:个性化与规范化的碰撞
血脂高能喝驼奶吗
和平精英狙击枪全解析:从AWM到M200,性能优劣与实战应用一文掌握
运用SMART原则,实战打造高效目标设定策略及心态调整
聚酯薄膜(PET)TDS检测报告:定义、作用与法规要求详解
纯干货!不是自己的车怎样查违章记录?赶紧get这招!
如何通过HR招聘渠道提高招聘效率?
2025年稀土行业现状分析:战略地位显著提升
心理学:既不想活,又不想死,如果有这种感觉该怎么办?
快手3面:说说傅里叶变换、拉普拉斯变换为什么要变换,它们之间的联系是什么!

急性胃肠炎怎么引起的?这些因素要当心
钟南山:临危受命身先士卒,科技战“疫”勇担大任
黎巴嫩传呼机爆炸,如何让非制式爆炸物无所遁形?
《红楼梦》贾府的奢侈生活描写
大蒜皮“浑身是宝”,这6种妙用,很多人都需要,一年能省不少钱
G5院校介绍-牛津大学
技术分析对比特币交易的重要性
瑞典超揭幕战前瞻:索尔纳强势补强剑指冠军,加尔斯核心流失难续黑马传奇
西餐风味「黑椒牛柳意面」在家详细制作指南