零维内弹道方程龙格-库塔法
创作时间:
作者:
@小白创作中心
零维内弹道方程龙格-库塔法
引用
1
来源
1.
https://www.kechuang.org/t/91014
零维内弹道模型是一种简化的内弹道分析方法,假设燃烧过程在空间上是均匀的,仅随时间变化,忽略气体流动的空间梯度。该模型通常用于描述封闭空间内(如枪膛或火箭发动机燃烧室)的燃烧过程,核心方程包括质量守恒、能量守恒和状态方程。龙格-库塔法是一种数值求解常微分方程(ODEs)的方法,其中四阶龙格-库塔法(RK4)因其高精度和稳定性而被广泛应用。RK4通过计算多个中间点的斜率,加权平均后得到更精确的解,适用于求解复杂的非线性微分方程,如零维内弹道方程。
零维内弹道方程的主要构成
零维内弹道方程是描述燃烧室内压力随时间变化的数学模型,通常用于分析火箭发动机或火炮的内弹道过程。龙格-库塔法(Runge-Kutta method)是一种数值求解微分方程的方法,适用于求解零维内弹道方程。
- P是燃烧室压力
- t是时间
- Y是比热比
- V是燃烧室体积
如果将V设为常数,便可简化式子为:
龙格库塔法
零维内弹道方程是描述燃烧室内压力随时间变化的数学模型,通常用于分析火箭发动机或火炮的内弹道过程。龙格-库塔法(Runge-Kutta method)是一种数值求解微分方程的方法,适用于求解零维内弹道方程。龙格-库塔法是一种数值积分方法,用于求解微分方程。对于方程:
四阶龙格-库塔法的迭代公式为
其中:
手绘气压随时间变化曲线
- 初始化参数
- 初始压力
- 时间步长
- 总时间
- 燃烧释放的热量速率
- 燃烧室体积
- 比热比
迭代计算
绘图
编程代码
import numpy as np
import matplotlib.pyplot as plt
# 定义零维内弹道方程
def dPdt(P, t, gamma, V, Q_dot):
return (gamma - 1) / V * Q_dot
# 四阶龙格-库塔法
def runge_kutta_4th_order(P0, t, h, gamma, V, Q_dot):
P = np.zeros(len(t))
P[0] = P0
for i in range(1, len(t)):
k1 = h * dPdt(P[i-1], t[i-1], gamma, V, Q_dot)
k2 = h * dPdt(P[i-1] + 0.5 * k1, t[i-1] + 0.5 * h, gamma, V, Q_dot)
k3 = h * dPdt(P[i-1] + 0.5 * k2, t[i-1] + 0.5 * h, gamma, V, Q_dot)
k4 = h * dPdt(P[i-1] + k3, t[i-1] + h, gamma, V, Q_dot)
P[i] = P[i-1] + (k1 + 2*k2 + 2*k3 + k4) / 6
return P
# 参数设置
P0 = 0.0 # 初始压力 (Pa)
gamma = 1.4 # 比热比
V = 1.0 # 燃烧室体积 (m³)
Q_dot = 1000 # 燃烧释放热量速率 (J/s)
t_end = 10 # 总时间 (s)
h = 0.1 # 时间步长 (s)
# 时间数组
t = np.arange(0, t_end + h, h)
# 计算压力随时间变化
P = runge_kutta_4th_order(P0, t, h, gamma, V, Q_dot)
# 绘制气压随时间变化曲线
plt.plot(t, P, label="Pressure (Pa)")
plt.xlabel("Time (s)")
plt.ylabel("Pressure (Pa)")
plt.title("Pressure vs Time in Zero-Dimensional Interior Ballistics")
plt.grid()
plt.legend()
plt.show()
实例
全部计算
题目
燃烧时间曲线结合计算法
手算方式
代码
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
d = 88e-3 # 装药内径 (m)
D = 106e-3 # 装药外径 (m)
L = 200e-3 # 装药长度 (m)
rho_p = 1775 # 装药密度 (kg/m^3)
V_c = 0.0079 # 燃烧室初始自由容积 (m^3)
r_gas = 1.2 # 燃气比热比
c_star = 1500 # 燃气特征速度 (m/s)
d_t = 17e-3 # 喷喉直径 (m)
p_c_t = 1.5e6 # 点火压强 (Pa)
p_a = 0.098e6 # 环境压强 (Pa)
T_c = 3260 # 燃烧温度 (K)
burn_rate_coeff = 8.3e-5 # 燃速系数
burn_rate_exp = 0.3 # 燃速指数
# 计算装药燃烧厚度
e = (D - d) / 2
# 燃速公式
def burn_rate(p_c):
return burn_rate_coeff * p_c ** burn_rate_exp
# 燃烧时间计算
def burn_time(p_c):
return e / burn_rate(p_c)
# 零维内弹道方程
def dpcdt(p_c, t):
if t <= burn_time(p_c): # 燃烧阶段
m_dot_p = burn_rate(p_c) * rho_p * np.pi * (D**2 - d**2) / 4 * L
else: # 燃烧结束,停止产生燃气
m_dot_p = 0
A_t = np.pi * (d_t / 2)**2 # 喷喉面积
m_dot_g = p_c * A_t / (c_star * np.sqrt(T_c)) # 喷喉质量流量
return (r_gas - 1) / V_c * (m_dot_p - m_dot_g)
# 四阶龙格-库塔法
def runge_kutta_4th_order(p_c0, t, h):
p_c = np.zeros(len(t))
p_c[0] = p_c0
for i in range(1, len(t)):
k1 = h * dpcdt(p_c[i-1], t[i-1])
k2 = h * dpcdt(p_c[i-1] + 0.5 * k1, t[i-1] + 0.5 * h)
k3 = h * dpcdt(p_c[i-1] + 0.5 * k2, t[i-1] + 0.5 * h)
k4 = h * dpcdt(p_c[i-1] + k3, t[i-1] + h)
p_c[i] = p_c[i-1] + (k1 + 2*k2 + 2*k3 + k4) / 6
return p_c
# 时间数组
t_end = 20 # 总时间 (s),确保覆盖燃烧和排气阶段
h = 0.01 # 时间步长 (s)
t = np.arange(0, t_end, h)
# 计算燃烧室压强随时间变化
p_c = runge_kutta_4th_order(p_c_t, t, h)
# 绘制燃烧室压强随时间变化曲线
plt.plot(t, p_c / 1e6, label="Chamber Pressure (MPa)")
plt.xlabel("Time (s)")
plt.ylabel("Pressure (MPa)")
plt.title("Chamber Pressure vs Time")
plt.grid()
plt.show()
绘制完成
更改后的代码
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
d = 88e-3 # 装药内径 (m)
D = 106e-3 # 装药外径 (m)
L = 200e-3 # 装药长度 (m)
rho_p = 1775 # 装药密度 (kg/m^3)
V_c = 0.0079 # 燃烧室初始自由容积 (m^3)
r_gas = 1.2 # 燃气比热比
c_star = 1500 # 燃气特征速度 (m/s)
d_t = 17e-3 # 喷喉直径 (m)
p_c_t = 1.5e6 # 点火压强 (Pa)
p_a = 0.098e6 # 环境压强 (Pa)
T_c = 3260 # 燃烧温度 (K)
burn_rate_coeff = 8.3e-5 # 燃速系数
burn_rate_exp = 0.3 # 燃速指数
# 计算装药燃烧厚度
e = (D - d) / 2
# 燃速公式
def burn_rate(p_c):
return burn_rate_coeff * p_c ** burn_rate_exp
# 燃烧时间计算
def burn_time(p_c):
return e / burn_rate(p_c)
# 零维内弹道方程
def dpcdt(p_c, t):
if t <= burn_time(p_c): # 燃烧阶段
m_dot_p = burn_rate(p_c) * rho_p * np.pi * (D**2 - d**2) / 4 * L
else: # 燃烧结束,停止产生燃气
m_dot_p = 0
A_t = np.pi * (d_t / 2)**2 # 喷喉面积
m_dot_g = p_c * A_t / (c_star * np.sqrt(T_c)) # 喷喉质量流量
return (r_gas - 1) / V_c * (m_dot_p - m_dot_g)
# 四阶龙格-库塔法
def runge_kutta_4th_order(p_c0, t, h):
p_c = np.zeros(len(t))
p_c[0] = p_c0
for i in range(1, len(t)):
k1 = h * dpcdt(p_c[i-1], t[i-1])
k2 = h * dpcdt(p_c[i-1] + 0.5 * k1, t[i-1] + 0.5 * h)
k3 = h * dpcdt(p_c[i-1] + 0.5 * k2, t[i-1] + 0.5 * h)
k4 = h * dpcdt(p_c[i-1] + k3, t[i-1] + h)
p_c[i] = p_c[i-1] + (k1 + 2*k2 + 2*k3 + k4) / 6
return p_c
# 时间数组
t_end = 20 # 总时间 (s),确保覆盖燃烧和排气阶段
h = 0.01 # 时间步长 (s)
t = np.arange(0, t_end, h)
# 计算燃烧室压强随时间变化
p_c = runge_kutta_4th_order(p_c_t, t, h)
# 绘制燃烧室压强随时间变化曲线
plt.plot(t, p_c / 1e6, label="Chamber Pressure (MPa)")
plt.xlabel("Time (s)")
plt.ylabel("Pressure (MPa)")
plt.title("Chamber Pressure vs Time")
plt.grid()
plt.show()
效果图
热门推荐
国家统计局发布最新数据,经济平稳起步态势好
打篮球对身体的好处有哪些
梦见掉了几颗牙,预示着什么?解梦与心理分析
肝功能损害者如何使用伏立康唑片?
天门地户对八字的影响:风水学中的宇宙之道与人生轨迹
如何实现每日投资收益
【which 用法】一次搞懂英文「which」用法跟中文意思
一文详解碳纤维开纤技术的特征、材料性能优势以及常见产品
碳纤维和炭黑导电材料的比较与应用
春季野钓,升温鱼好钓,还是降温鱼好钓?答案出人意料
孩子膝盖上长了个“疙瘩”,千万不能忽视哦
篮球让球是什么意思
宝宝腹泻?呕吐?可能是轮状病毒在作怪!7个应对方法要记牢!
应急科普 | 朋友圈销售烟花爆竹可能涉嫌违法,售卖方、转发者均要担责!
短期决策策略:助你快速应对市场变化
地震预警苹果设置通知方法
客户存放的物品如何管理
复方阿胶浆男性可以饮用吗?专家给出专业解答
现场检查是什么?从概念到实施的全面解析
金价高涨带火黄金回购,记者探访:有金店回购价格与售价差200元
善良行为的社会意义与影响
我国有个省,60年内省会搬了11次,太能折腾了
监测血糖的好伙伴——糖化血红蛋白(HbA1c)
【何以中国 运载千秋】大运河畔的“时光机”:23年10万张照片记录大运河变迁
【何以中国 运载千秋】大运河畔的“时光机”:23年10万张照片记录大运河变迁
探索海南五指山:详解从各地前往五指山的交通攻略
多模态慢思考:分解原子步骤以解决复杂数学推理
美国最近10任总统,历任美国总统的简介与背景
野钓鲫鱼饵料全解析:从蚯蚓到商品饵,哪种最有效?
5G 手机性能与散热之谜:如何在高温与高性能间取得平衡?