零维内弹道方程龙格-库塔法
创作时间:
作者:
@小白创作中心
零维内弹道方程龙格-库塔法
引用
1
来源
1.
https://www.kechuang.org/t/91014
零维内弹道模型是一种简化的内弹道分析方法,假设燃烧过程在空间上是均匀的,仅随时间变化,忽略气体流动的空间梯度。该模型通常用于描述封闭空间内(如枪膛或火箭发动机燃烧室)的燃烧过程,核心方程包括质量守恒、能量守恒和状态方程。龙格-库塔法是一种数值求解常微分方程(ODEs)的方法,其中四阶龙格-库塔法(RK4)因其高精度和稳定性而被广泛应用。RK4通过计算多个中间点的斜率,加权平均后得到更精确的解,适用于求解复杂的非线性微分方程,如零维内弹道方程。
零维内弹道方程的主要构成
零维内弹道方程是描述燃烧室内压力随时间变化的数学模型,通常用于分析火箭发动机或火炮的内弹道过程。龙格-库塔法(Runge-Kutta method)是一种数值求解微分方程的方法,适用于求解零维内弹道方程。
- P是燃烧室压力
- t是时间
- Y是比热比
- V是燃烧室体积
如果将V设为常数,便可简化式子为:
龙格库塔法
零维内弹道方程是描述燃烧室内压力随时间变化的数学模型,通常用于分析火箭发动机或火炮的内弹道过程。龙格-库塔法(Runge-Kutta method)是一种数值求解微分方程的方法,适用于求解零维内弹道方程。龙格-库塔法是一种数值积分方法,用于求解微分方程。对于方程:
四阶龙格-库塔法的迭代公式为
其中:
手绘气压随时间变化曲线
- 初始化参数
- 初始压力
- 时间步长
- 总时间
- 燃烧释放的热量速率
- 燃烧室体积
- 比热比
迭代计算
绘图
编程代码
import numpy as np
import matplotlib.pyplot as plt
# 定义零维内弹道方程
def dPdt(P, t, gamma, V, Q_dot):
return (gamma - 1) / V * Q_dot
# 四阶龙格-库塔法
def runge_kutta_4th_order(P0, t, h, gamma, V, Q_dot):
P = np.zeros(len(t))
P[0] = P0
for i in range(1, len(t)):
k1 = h * dPdt(P[i-1], t[i-1], gamma, V, Q_dot)
k2 = h * dPdt(P[i-1] + 0.5 * k1, t[i-1] + 0.5 * h, gamma, V, Q_dot)
k3 = h * dPdt(P[i-1] + 0.5 * k2, t[i-1] + 0.5 * h, gamma, V, Q_dot)
k4 = h * dPdt(P[i-1] + k3, t[i-1] + h, gamma, V, Q_dot)
P[i] = P[i-1] + (k1 + 2*k2 + 2*k3 + k4) / 6
return P
# 参数设置
P0 = 0.0 # 初始压力 (Pa)
gamma = 1.4 # 比热比
V = 1.0 # 燃烧室体积 (m³)
Q_dot = 1000 # 燃烧释放热量速率 (J/s)
t_end = 10 # 总时间 (s)
h = 0.1 # 时间步长 (s)
# 时间数组
t = np.arange(0, t_end + h, h)
# 计算压力随时间变化
P = runge_kutta_4th_order(P0, t, h, gamma, V, Q_dot)
# 绘制气压随时间变化曲线
plt.plot(t, P, label="Pressure (Pa)")
plt.xlabel("Time (s)")
plt.ylabel("Pressure (Pa)")
plt.title("Pressure vs Time in Zero-Dimensional Interior Ballistics")
plt.grid()
plt.legend()
plt.show()
实例
全部计算
题目
燃烧时间曲线结合计算法
手算方式
代码
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
d = 88e-3 # 装药内径 (m)
D = 106e-3 # 装药外径 (m)
L = 200e-3 # 装药长度 (m)
rho_p = 1775 # 装药密度 (kg/m^3)
V_c = 0.0079 # 燃烧室初始自由容积 (m^3)
r_gas = 1.2 # 燃气比热比
c_star = 1500 # 燃气特征速度 (m/s)
d_t = 17e-3 # 喷喉直径 (m)
p_c_t = 1.5e6 # 点火压强 (Pa)
p_a = 0.098e6 # 环境压强 (Pa)
T_c = 3260 # 燃烧温度 (K)
burn_rate_coeff = 8.3e-5 # 燃速系数
burn_rate_exp = 0.3 # 燃速指数
# 计算装药燃烧厚度
e = (D - d) / 2
# 燃速公式
def burn_rate(p_c):
return burn_rate_coeff * p_c ** burn_rate_exp
# 燃烧时间计算
def burn_time(p_c):
return e / burn_rate(p_c)
# 零维内弹道方程
def dpcdt(p_c, t):
if t <= burn_time(p_c): # 燃烧阶段
m_dot_p = burn_rate(p_c) * rho_p * np.pi * (D**2 - d**2) / 4 * L
else: # 燃烧结束,停止产生燃气
m_dot_p = 0
A_t = np.pi * (d_t / 2)**2 # 喷喉面积
m_dot_g = p_c * A_t / (c_star * np.sqrt(T_c)) # 喷喉质量流量
return (r_gas - 1) / V_c * (m_dot_p - m_dot_g)
# 四阶龙格-库塔法
def runge_kutta_4th_order(p_c0, t, h):
p_c = np.zeros(len(t))
p_c[0] = p_c0
for i in range(1, len(t)):
k1 = h * dpcdt(p_c[i-1], t[i-1])
k2 = h * dpcdt(p_c[i-1] + 0.5 * k1, t[i-1] + 0.5 * h)
k3 = h * dpcdt(p_c[i-1] + 0.5 * k2, t[i-1] + 0.5 * h)
k4 = h * dpcdt(p_c[i-1] + k3, t[i-1] + h)
p_c[i] = p_c[i-1] + (k1 + 2*k2 + 2*k3 + k4) / 6
return p_c
# 时间数组
t_end = 20 # 总时间 (s),确保覆盖燃烧和排气阶段
h = 0.01 # 时间步长 (s)
t = np.arange(0, t_end, h)
# 计算燃烧室压强随时间变化
p_c = runge_kutta_4th_order(p_c_t, t, h)
# 绘制燃烧室压强随时间变化曲线
plt.plot(t, p_c / 1e6, label="Chamber Pressure (MPa)")
plt.xlabel("Time (s)")
plt.ylabel("Pressure (MPa)")
plt.title("Chamber Pressure vs Time")
plt.grid()
plt.show()
绘制完成
更改后的代码
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
d = 88e-3 # 装药内径 (m)
D = 106e-3 # 装药外径 (m)
L = 200e-3 # 装药长度 (m)
rho_p = 1775 # 装药密度 (kg/m^3)
V_c = 0.0079 # 燃烧室初始自由容积 (m^3)
r_gas = 1.2 # 燃气比热比
c_star = 1500 # 燃气特征速度 (m/s)
d_t = 17e-3 # 喷喉直径 (m)
p_c_t = 1.5e6 # 点火压强 (Pa)
p_a = 0.098e6 # 环境压强 (Pa)
T_c = 3260 # 燃烧温度 (K)
burn_rate_coeff = 8.3e-5 # 燃速系数
burn_rate_exp = 0.3 # 燃速指数
# 计算装药燃烧厚度
e = (D - d) / 2
# 燃速公式
def burn_rate(p_c):
return burn_rate_coeff * p_c ** burn_rate_exp
# 燃烧时间计算
def burn_time(p_c):
return e / burn_rate(p_c)
# 零维内弹道方程
def dpcdt(p_c, t):
if t <= burn_time(p_c): # 燃烧阶段
m_dot_p = burn_rate(p_c) * rho_p * np.pi * (D**2 - d**2) / 4 * L
else: # 燃烧结束,停止产生燃气
m_dot_p = 0
A_t = np.pi * (d_t / 2)**2 # 喷喉面积
m_dot_g = p_c * A_t / (c_star * np.sqrt(T_c)) # 喷喉质量流量
return (r_gas - 1) / V_c * (m_dot_p - m_dot_g)
# 四阶龙格-库塔法
def runge_kutta_4th_order(p_c0, t, h):
p_c = np.zeros(len(t))
p_c[0] = p_c0
for i in range(1, len(t)):
k1 = h * dpcdt(p_c[i-1], t[i-1])
k2 = h * dpcdt(p_c[i-1] + 0.5 * k1, t[i-1] + 0.5 * h)
k3 = h * dpcdt(p_c[i-1] + 0.5 * k2, t[i-1] + 0.5 * h)
k4 = h * dpcdt(p_c[i-1] + k3, t[i-1] + h)
p_c[i] = p_c[i-1] + (k1 + 2*k2 + 2*k3 + k4) / 6
return p_c
# 时间数组
t_end = 20 # 总时间 (s),确保覆盖燃烧和排气阶段
h = 0.01 # 时间步长 (s)
t = np.arange(0, t_end, h)
# 计算燃烧室压强随时间变化
p_c = runge_kutta_4th_order(p_c_t, t, h)
# 绘制燃烧室压强随时间变化曲线
plt.plot(t, p_c / 1e6, label="Chamber Pressure (MPa)")
plt.xlabel("Time (s)")
plt.ylabel("Pressure (MPa)")
plt.title("Chamber Pressure vs Time")
plt.grid()
plt.show()
效果图
热门推荐
华西医院研究:心率快慢与寿命相关,教你如何管理心率预防心血管疾病
跑步爱好者必读:如何科学调节心率?
如何养好细胞?贴壁细胞VS悬浮细胞
光透过率检测仪:隧道内能见度的分析

内衣行业转型:三大驱动助力中国企业出海
肾错构瘤患者饮食禁忌:高脂高盐刺激物要少吃
确诊肾错构瘤需要哪些检查?三大类检查方法详解
一文带你认识光学滤光片所有知识
揭秘透度和雾度:材料透明性的量化与评估
《哆啦A梦:大雄的地球交响乐》:世界如果没有音乐会变得怎样?
曾与《哆啦A梦》混淆的《叮当猫》
中国“好望角”成山头:春节观日出、探古迹全攻略
春节游山东荣成:天鹅湖畔庙会开,亲子游玩好去处
从土壤到温度:富贵竹科学养护指南
百合竹养殖全攻略:14个关键要点详解
百合竹:办公室绿植首选,六大功效提升空气质量
百合花:寓意美好,家居风水中的吉祥之选
金边百合竹养殖要点:光照、浇水、施肥全解析
南开区小学转学入学新政:2025年起转学年级有调整
安卓苹果手机陌生号码拦截功能这样设置
泸沽湖绝美打卡地,你心动了吗?
泸沽湖秋色摄影指南:捕捉最美瞬间
泸沽湖自驾游:揭秘摩梭族神秘文化
选择办三无婚礼的年轻人
婚纱选的好,婚礼上做最美的新娘吧
婚礼费用预算表(详细版) 这份婚礼预算list请收好!
轻度肌肉拉伤自救指南:从急救到康复的完整攻略
肌肉拉伤康复的营养秘诀:优质蛋白质和鸡蛋的科学补充指南
成都市第七人民医院推荐:轻度肌肉拉伤康复训练指南
肌肉拉伤后,如何调整心态?