问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

分子的运动与相互作用:从扩散到布朗运动的微观世界

创作时间:
作者:
@小白创作中心

分子的运动与相互作用:从扩散到布朗运动的微观世界

引用
1
来源
1.
https://enjoyphysics.cn/Article2836

分子是构成物质的基本单元,它们在不停地运动着,同时相互之间还存在着复杂的相互作用。这些微观现象虽然无法直接观察,但通过一些实验和现象,我们可以揭示它们的规律。本文将从扩散现象和布朗运动入手,探讨分子的运动规律,以及分子间的引力和斥力是如何影响物质的宏观性质的。

分子的运动

组成物质的分子在做永不停息的无规则运动,虽然用肉眼看不到分子,但我们可以通过一些宏观现象为这个结论提供证据。

扩散现象


图 10-8 扩散现象

如图 10-8 所示,取两杯温度不同、体积相同的清水,分别向其中滴入一滴红墨水,红墨水在两杯水中散开,这种现象称为扩散(diffusion)。可以观察到温度高的水中的红墨水扩散得更快,这说明温度越高,扩散越快。

扩散现象并不是重力或对流等原因造成的,而是由于分子的无规则运动产生的。从微观角度看,墨水的扩散实际上是墨水颗粒在水中被水分子撞击而不断移动的过程。温度越高扩散越快,说明温度越高,水分子运动越剧烈。

气体中也存在扩散现象,能闻到面包的香味就是面包的芳香分子扩散产生的结果。扩散现象还能在固体中发生,并且有重要的应用,例如利用扩散现象将碳原子掺入钢件的表面可以提高钢件的硬度,在半导体材料中掺入微量的杂质可以达到控制半导体性能的目的。

布朗运动

1827 年,英国植物学家布朗(R. Brown,1773—1858)用显微镜观察悬浮在水中的花粉,发现花粉颗粒不停地做无规则的运动。他经过不断尝试发现,除了花粉外,对于液体中类似大小的其他悬浮颗粒,都可以观察到这种运动。后人把悬浮颗粒的这种无规则运动叫做布朗运动(Brownian motion)

将一滴用水稀释过的墨汁滴在载玻片上,覆上盖玻片,放在高倍显微镜下观察,可以看到如图 10-9 所示的悬浮颗粒在液体中不停地做无规则运动,这就是布朗运动。


图 10-9 显微镜下的悬浮颗粒 图 10-10 布朗运动

用显微镜观察布朗运动,并通过显示器显示出来,用追踪软件记录每隔相同时间颗粒所在的位置,然后用线段把这些位置依次连接起来,如图 10-10 所示。结果表明布朗运动是杂乱无章的。

布朗运动是怎样产生的呢?起初,人们认为是由外界影响如振动、液体的对流等引起的。但实验表明:在尽量排除外界影响的情况下布朗运动仍然存在;只要颗粒足够小,在任何液体中都可以观察到布朗运动;布朗运动不会停止,连续观察许多天,甚至几个月,也不会看到这种运动停下来。可见布朗运动的成因不在外界,而在液体内部。

悬浮在液体中的颗粒周围布满了大量的液体分子,颗粒的布朗运动应该是由液体分子的撞击造成的。图 10-11 描绘了颗粒受到周围液体分子撞击的情景。当颗粒足够小时,它受到的来自各个方向的液体分子的撞击作用是不平衡的。在周围分子无规则的撞击下,颗粒运动的方向频繁地发生变化。颗粒越小,在某一瞬间与它相撞的分子数越少,撞击作用的不平衡性就表现得越明显,因而布朗运动越明显。颗粒杂乱无章的运动,说明液体分子对颗粒的撞击是随机的。布朗运动的无规则性,反映了液体内部分子运动的无规则性。

扩散实际上就是一种布朗运动。布朗运动表明分子的运动是永不停息的无规则运动,其剧烈程度与温度有关,并且温度越高,这种运动越剧烈,所以把分子的这种运动叫做热运动(thermal motion)。温度是分子热运动剧烈程度的标志。

分子间的相互作用

取一支长约 1 m 的玻璃管,注入半管清水,再注入酒精直至液面接近管口。封住管口,反复颠倒玻璃管,然后观察管中液面位置的变化。


图 10-12 玻璃片脱离水面

气体很容易被压缩,说明气体分子间存在着很大的空隙。在自主活动中水和酒精混合后液面下降,总体积减小,说明液体分子间存在着空隙。碳原子能扩散进入钢件的表面,说明固体分子之间也存在着空隙。

分子间存在空隙,但是用力压一个铅块,却很难减小它的体积,这说明分子间存在着斥力。

分子间同时还存在着引力。如图 10-12 所示,用吸盘、细线将一块洗净的玻璃板水平地悬挂在弹簧测力计下端,并使玻璃板贴在水面上;然后缓慢提起弹簧测力计,在玻璃板脱离水面的一瞬间,弹簧测力计的示数明显大于玻璃板的重力。这是因为在玻璃板离开水面的瞬间,测力计对玻璃板的拉力不仅要克服玻璃板的重力,还要克服水分子对玻璃板下表面分子的引力作用。图 10-7 中两个相互压紧的铅块之所以不会分开,甚至下面挂很重的钩码也不能把它们分开,也是因为铅分子之间的引力将两铅块“粘”在了一起。


图 10-13 分子间作用力

深入的研究表明,分子间同时存在着引力和斥力,它们的大小都跟分子间的距离有关。图 10-13 中的两条虚线分别表示两个分子间的引力F引和斥力F斥随分子间距离r变化的情形;实线表示F引和F斥的合力F(即实际表现出来的分子间的作用力)随r变化的情形。

从图示的曲线可以看出,F引和F斥都随着r增大而减小,且F斥减小得更快。

当r=r0时,F引=F斥,F= 0,这个位置称为平衡位置;
当r<r0时,F引<F斥,F表现为斥力;
当r>r0时,F引>F斥,F表现为引力。

r0的数量级约为 10−10m。当r的数量级大于 10−9m 时,分子间的作用力已经变得非常微弱,可以忽略不计。

分子间为什么同时存在引力和斥力呢?分子是由原子构成的,而原子是由原子核和电子组成的。原子核带正电,电子带负电,它们的总电荷量大小相等,因而分子处于电中性状态,对外不显电性。当两个分子相互靠近时,异号电荷之间产生吸引力,同号电荷之间产生排斥力,所以分子间同时存在引力和斥力。两个分子刚开始靠近时,每个分子上的电荷受到扰动而使它们的位置稍有变化,两个分子中异号电荷之间的吸引作用超过同号电荷之间的排斥作用,因此分子之间的作用力在总体上表现为引力。如果两个分子进一步靠近,以致带正电的原子核之间的库仑斥力变得显著,这时分子间的作用力就表现为斥力。

分子动理论的基本观点

通过前面的学习已经知道:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间同时存在着引力和斥力。这就是分子动理论(molecular kinetic theory)的基本观点。

与其他物理理论一样,分子动理论也是建立在大量的实验基础之上的。根据分子动理论,热现象是大量分子无规则运动的宏观表现,温度表示分子无规则运动的剧烈程度。用分子动理论可以说明很多的热现象和物质的性质。科学家们用分子动理论首先详细地研究了气体,解释了气体的宏观性质,之后又用分子动理论研究了液体和固体,也获得了很大的成功。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号