Python实现五折交叉验证:训练、验证、测试集划分
创作时间:
2025-01-22 06:26:13
作者:
@小白创作中心
Python实现五折交叉验证:训练、验证、测试集划分
假定在某一个项目中,没有现成的数据集划分,你需要手动将该数据集划分为训练、验证和测试集,一般比例取60%:20%:20%。 但是仅仅通过随机选取某一个数据集划分可能是不全面的,因而我们应该使用五折交叉验证,使得每个子集都有可能成为测试集,从而取五折测试集的平均性能作为整体算法的性能,即如下图所示。
那么如何用代码实现呢?
假定我们有一个图像文件夹img_path,希望通过遍历该图像文件夹来获取五折划分对应的训练-验证-测试子集。
这里我们首先考虑一个简单的非图像数据,我们直接给出相应的代码:
import numpy as np
# 定义数据集,假设有4222个样本
Num=4222
data = np.arange(Num)
# 定义 5 折交叉验证的 k 值
k = 5
# 计算每个折的大小
fold_size = int(len(data) / k)
# 设置随机种子,以确保无论运行多少次,打乱后的结果都会相同
np.random.seed(42)
# 随机打乱数据集
np.random.shuffle(data)
# 划分训练集、测试集和验证集
for i in range(k):
# 计算当前折的起始位置和结束位置
start = i * fold_size
end = (i + 1) * fold_size
if Num-end < fold_size: # 防止末尾有剩余
end = Num
# 将当前折作为测试集,其余折作为训练集
test_set = data[start:end]
#邻近测试集的下一个折作为验证集
val_start = end%Num
val_end = val_start + fold_size
if Num-val_end < fold_size: # 防止末尾有剩余
val_end = Num
val_set = data[val_start:val_end]
test_val_set = np.concatenate([test_set, val_set])
# 其余为训练集,第一种算法,优选
train_set = np.array([x for x in data if x not in test_val_set])
# 计算两个集合的差集,第二种算法
train_set2 = np.array(list(set(data) - set(test_val_set)))
# 输出当前折的数据情况
print(f"Fold {i + 1}:")
print(f"Train set size: {len(train_set)}")
print(f"Validation set size: {len(val_set)}")
print(f"Test set size: {len(test_set)}")
print("=====================")
在此基础上,我们给出图像数据的代码:
import numpy as np
from os.path import join, splitext, split, isfile
import os, sys, argparse
import time
# 定义数据集,假设有4222个样本
img_path = 'H:/dataset/CVBL/IrisImage-single/'
imgs = [i for i in os.listdir(img_path)]
Num = len(imgs)
data = np.arange(Num)
# 定义 5 折交叉验证的 k 值
k = 5
# 计算每个折的大小
fold_size = int(len(data) / k)
# 设置随机种子,以确保无论运行多少次,打乱后的结果都会相同
np.random.seed(42)
# 随机打乱数据集
np.random.shuffle(data)
# 划分训练集、测试集和验证集
for i in range(k):
# 计算当前折的起始位置和结束位置
start = i * fold_size
end = (i + 1) * fold_size
if Num-end < fold_size: # 防止末尾有剩余
end = Num
# 将当前折作为测试集,其余折作为训练集
test_set = data[start:end]
test_img_set = [imgs[index] for index in test_set]
#邻近测试集的下一个折作为验证集
val_start = end%Num
val_end = val_start + fold_size
if Num-val_end < fold_size: # 防止末尾有剩余
val_end = Num
val_set = data[val_start:val_end]
val_img_set = [imgs[index] for index in val_set]
test_val_set = np.concatenate([test_set, val_set])
# 其余为训练集,第一种算法,优选
train_set = np.array([x for x in data if x not in test_val_set])
# 计算两个集合的差集,第二种算法
train_set2 = np.array(list(set(data) - set(test_val_set)))
train_img_set = [imgs[index] for index in train_set]
# 输出当前折的数据情况
print(f"Fold {i + 1}:")
print(f"Train set size: {len(train_set)}")
print(f"Validation set size: {len(val_set)}")
print(f"Test set size: {len(test_set)}")
print("=====================")
本文原文来自CSDN
热门推荐
脑机接口让“读懂大脑”成为可能
在Excel中把打印内容打印在一页上的5种方法,总有一种适合你
自动化测试与持续集成:提升代码稳定性与发布频率
双子座星座分析:精彩而矛盾的双重性格
耐压强度测试
装修还需要征得政府有关部门的批准和同意吗
房屋装修莫任性,承重结构不能动!
Science发表"背靠背"论文,何祖华团队探索"未来农药"
60厘米水草缸设置全攻略:设备选购与维护要点
确保纯化水系统长期稳定运行的维护策略
EDI超纯水设备进水参数与条件要求
天蝎座与射手座的配对分析:是否合适?
红烧排骨~炒糖色
猪肝的营养价值与烹饪指南:从爆炒到盐水煮的多种美味做法
豹5动力性能解析:505kW最大功率,8000N·m轮端扭矩
农业气象站:常见问题、维修技巧和安装要求
嗜睡症的表现症状
畅游海南岛:坐邮轮的费用全解析
哪些药刷医保卡会影响保额
老师生病了送什么礼物好?十大暖心礼物推荐
颈椎病出现耳朵旁两侧疼痛是什么原因
梨形身材必收:牛仔裤显瘦穿搭全攻略
自动挡汽车考试项目及C2驾驶证准驾车型详解
系统架构评估方法有哪些?
股票多少手是什么意思:手数在股票交易中的含义
期货手数的意义是什么?它对交易策略有怎样的影响?
高尿酸血症能吃鸡蛋吗
尿酸高的人能吃鸡蛋吗
电线平方与直径对照表
甲状腺疾病容易盯上哪些人?查出甲状腺结节要手术吗?| 世界甲状腺日