问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

2024智能与环保纤维领域的7大新兴技术介绍

创作时间:
2025-01-21 21:42:14
作者:
@小白创作中心

2024智能与环保纤维领域的7大新兴技术介绍

近日,国家先进功能纤维创新中心发布了“2024纤维领域十大新兴技术”。本文来看一下其中,智能与环保纤维领域的新兴技术介绍。一般用于服装、家居、装饰等产品领域,部分也可作为汽车内饰创新材料的应用。

智能纤维新兴技术

1. 纤维基柔性感知材料与技术

纤维基柔性感知材料与技术,是构建柔性电子器件一种新材料和先进的集成策略。生命健康一直以来都是人类最为关注的科学问题。实时监测人体各种生理指标对生命健康起着重要的作用。新兴的柔性电子技术的出现正在渗透到人类日常生活的各个领域,包括柔性触觉传感系统、人工电子皮肤、智能纺织品、可穿戴健康监测、可植入装置等,它正在引领我们构建和使用电子产品的时尚。

为满足复合材料的发展和人们智能化生活的需求,科学家们已经开发出各式各样的功能纤维。顾名思义,功能纤维就是指在纤维现有的性能之外,还具有某些特殊功能,如导电纤维、光导纤维等。将功能纤维与纺织品结合,并赋予衣物新功能,一直是科学家们关注的热点。半导体二极管是现代计算、通信和传感技术的基本组成部分。将它们整合到纺织品级的纤维中,可以提高织物的“聪明度”。

目前,在可拉伸、可穿戴、生物相容性、甚至可植入的电子产品领域的巨大发展,大大拓宽了物联网(loT)的应用范围,这同时对拥有低重量、低功耗、稳定功能和低制造成本的电子设备提出了巨大挑战。此外,用于监测人类运动和医疗保健的柔性电子器件需要设备和每个组件有足够的应变能力,以及集成功能,以满足不同应用场景的要求。下面看一下最新研究成果:

  • 华中科技大学团队研发无感化智能睡眠监测装备,将柔性感知纤维与人工智能结合,实现无感状态下对人体进行睡眠监测与远程监护。柔性纤维新材料与智能织物计算的结合赋予智能健康监测系统无感性及准确性,实现精密测量;
  • 中国科学技术大学团队通过传感织物结合驱动单元,开发织物型压力传感材料,开展体型体态拟合和体表压力映射,可应用于卧床护理(翻身指导、良肢位摆放、康复训练指导等)、特殊人群监测(老人、婴幼儿)、家具设计和选择(与个人体型和睡眠习惯匹配的床垫)等。
  • 声学与纤维材料科学、电子学和信息科学的融合正在带来一代新的灵活可穿戴声学传感器,其特点是高柔性、超轻重、优异的整体性和不可察觉性。这种截然不同类型的声学感知技术包括皮肤贴片和薄膜、纳米薄膜、纳米纤维基网、精密结构纤维和纱线等。

2. 纳米纤维高通量制备技术

纳米纤维高通量制备技术,实现超细纤维的超快制造,为纳米纤维的规模化生产提供了新思路和新机遇。作为一种具有引人注目关注的纳米材料,纳米纤维由于其独特的物理化学性质和特性而广泛用于环保过滤、能源转化和储能、柔性电子等领域。然而,实现高效率、低成本连续稳定制备高质量纳米纤维材料仍是一个挑战。

下面来看一下最新研发成果

  • 兰州大学研究团队自主创新的“锥形体超高速电纺丝”和“压缩气体喷丝”两项高产率纳米纤维制备技术,经改进的制备技术,制备工艺及成本更为经济、高效,将大规模生产纳米纤维变为现实。产品物理和力学性质完全达到同类产品国际水平,因此两项成本更为经济的纳米纤维规模化制备技术不仅能为企业创造可观的利润,也对提升行业的技术水平,跻身国际前沿有着重要的现实意义;
  • 清华大学深圳国际研究生院、国家先进功能纤维创新中心等单位共同研究“气纺纳米纤维规模化制备成套技术及产业化”,在系统研究高速气流场下聚合物溶液射流成纤机理基础上,设计开发工业级的设备产线,可高效实现纳米纤维的产量,为纳米纤维的高效工业化应用,高通量制备提供了实施路径。
  • 国家先进功能纤维创新中心联合青岛大学合作研究高效无针静电纺丝技术,通过研究自由液面纺丝射流产生机理,开发封闭式无针静电纺丝技术,自主建造了连续静电纺丝设备,解决了无针静电纺丝稳定性差、制备的纳米纤维膜均匀性差等问题。

3. 先进能源纤维材料

可穿戴电子设备的快速发展给人们的生活带来了巨大的便利,并逐渐渗透到健康监测、医疗救助、智能体育、物体跟踪、智慧家居等重要领域。然而,适合这些可穿戴电子产品的能量供给系统仍然是一个亟需解决的问题。先进能源纤维材料是基于材料、信息、能源等学科领域的技术突破与交叉融合的新型材料。可以最大程度解决这个问题。


图 纤维基自供能器件

韩国成均馆大学研究团队通过电纺丝和电镀技术,开发了一种全新的全纳米纤维基压电纳米发电机,该设备不仅具有高透明度和柔韧性,还能够有效收集和监测人体运动产生的能量。纤维和纺织摩擦电纳米发电机能够有效将生物机械能转化为电能/电信号,既可以为可穿戴电子产品提供移动可持续的电能,又可以直接作为一种传感解决方案。

电池隔膜材料
锂硫电池是一种极具吸引力的高能量密度电池,可应用于柔性和可穿戴的电子产品。但困难的是如何同时实现其灵活性、稳定性和保持高的能量密度。最近的研究表明,纤维材料由于其柔韧性良好、重量轻、表面积大和成本低等优势,有望用于制作高能量密度的柔性电池。纤维材料具有良好的结构和功能可调性,可适用于构建工作电池的各种组件。

香港理工大学郑子剑团队重点研究了纤维材料的合成和制备、结构和功能的设计以及电池单元的布局,以提高充电效率、循环寿命和灵活性。

创新中心通过对聚苯硫醚(PPS)聚合、纺丝、表面改性、织造结构设计优化等进行研发和试验,使之达到PPS水电解隔膜新产品前端面料的基础要求。组织试验材料、场地、设备和检测仪器,开展PPS面料表面处理工作,达到气密性、面电阻等技术指标要求。通过聚苯硫醚网纱基底的结构设计和表面涂膜材料的配比,制备出新一代高性能隔膜材料。

光伏用纤维增强复合材料
纤维增强复合材料主要由高性能纤维(如碳纤维、玻璃纤维或芳纶纤维)和基体材料(通常是热固性或热塑性树脂)组成。

随着光伏行业的发展,光伏组件结构轻量化、应用环境极端化成为发展趋势,复合材料中的高性能纤维增强复合材料正是光伏组件结构轻量化的首选材料,也是极端环境中使用的不可或缺材料。光伏用玻璃纤维增强复合材料制品列入工业和信息化部发布的《重点新材料首批次应用示范指导目录(2024年版)》,说明了纤维增强复合材料在光伏领域有无限的发展前景和可能。

环保纤维新兴技术

4. 消费后纺织品高值化转化

我国每年会产生大量废旧纺织品。废旧纺织品循环利用对节约资源、减污降碳具有重要意义。

《关于加快推进废旧纺织品循环利用的实施意见》指出到2025年,废旧纺织品循环利用体系初步建立,循环利用能力大幅提升,废旧纺织品循环利用率达到25%,废旧纺织品再生纤维产量达到200万吨。到2030年,建成较为完善的废旧纺织品循环利用体系,高值化利用途径不断扩展,产业发展水平显著提升,废旧纺织品循环利用率达到30%,废旧纺织品再生纤维产量达到300万吨。

下面介绍不同企业及机构的最新技术成果。

  • 美国Refiberd公司通过基于人工智能的高光谱成像进行先进的材料检测技术,在各种纤维中进行检测和分类,实现从纺织品到纺织品的循环利用;
  • 唐山三友开发出废旧棉浆粕低成本、高效率制备再生纤维素纤维技术和产品,以废旧棉浆粕为原料,研发出小半径水合钠离子浸渍活化、碱纤维素精准可控老成、棉基纤维素全流程疏解和活化、纺丝液除杂、纺丝浴自调节、纤维高度取向等技术,对各类废旧棉浆粕制备优质再生纤维素纤维具有普适性;
  • 香港理工大学李鹂教授团队将天然大麻纤维中多糖的固有溶胀效应与管状织物的特殊编织工艺相结合,建立了一种孔隙湿度和自我调节的农业灌溉和除草一体化织物。这种新型管状织物由天然纤维制成,无需化学涂层或整理,不仅提高水的利用率,而且符合政府对具有成本竞争力的纺织产品和环保农业技术的政策;
  • 目前还有生物酶法、水热法等新型分离方法,该方法能与一类或两类纤维同时反应,有潜力在低能耗和环境友好的条件下实现纺织品的高效回收。
  • 武汉纺织大学周建刚团队提出了利用废旧纺织品制备细菌纤维素的方法,废旧纺织品经预处理后,用得到的织物水解液配制培养基并接种菌株,静态发酵数日后制备细菌纤维素,证明废弃纺织品是很有潜力的生产细菌纤维素的低成本原料,为其回收利用开辟了一条绿色、高效的新途径;
  • 中国科学院宁波材料技术与工程研究所有机储氢与催化团队提出酯交换/氢化接力的新策略,实现了从废弃聚酯直接出发,通过两步法高效合成重要的化工原料1,4-环己烷二甲醇(CHDM);方法具有优异的普适性,可降解各种PET制品(如饮料瓶、漱口水瓶、隔音板、废布料等),亦可兼容其他类型的聚酯材料,具备广阔的应用潜力。

5. 负碳纤维技术

聚碳酸亚丙酯(PPC)
新型负碳材料及改性技术是以性能优异的完全可降解环保材料——PPC(聚碳酸亚丙酯)为原料,通过熔融共混改性改善PPC加工性能差等问题,进而进行改性PPC基功能产品的开发。

负碳PET
关于聚酯纤维的三个发展阶段,分别是一滴油到一根纱,一个回收塑料瓶到一根纱,二氧化碳到一根纱的故事,迭代发展变迁,是对大自然的敬畏,也是科技的力量与进步。

经测算,每吨纱线可以捕集320kg二氧化碳。初步规划年产能为3万吨纱线,相当于捕集了近1万吨的二氧化碳。按1棵树一年的二氧化碳吸收量为10kg左右,相当于100万棵树一年的二氧化碳吸收量。

负碳乙二醇(纤维原料)
碳一(C1)分子是重要碳资源(CH4、CO2)或化工平台化合物(CH3OH、HCHO、CO),由碳一分子直接碳碳偶联制备C2+化学品,如低碳烯烃、乙醇、乙二醇等,利用太阳能来驱动碳一分子的碳碳偶联过程,有望突破传统热催化反应过程在热力学或动力学方面的限制,创新反应途径。

厦门大学王野教授团队开创了光催化甲醛偶联制乙二醇的新过程,实现了甲醇制乙二醇的可见光光催化反应过程。在MoS2/CdS催化剂上,甲醇生成乙二醇的选择性可达90%,收率16%。

6. 生物基可降解聚酯

生物基可降解材料得益于优秀的碳减排能力,成为替代和补充石化基材料的最佳选择。在“可持续发展”时代背景下,着力研究生物可降解材料以及推动生物可降解合成纤维的研究和应用是促进纤维材料绿色转型的有效途径之一。

(1)作为以玉米、木薯等可再生的植物资源为原料的纤维产品,聚乳酸(PLA)纤维整条产业链与石油系工艺零关联,天然带有“绿色基因”。聚乳酸生产过程采用现代生物发酵技术,再经过聚合而成。作为目前产业化较好的生物可降解合成纤维,其原料来源丰富、生产技术相对成熟,且具有良好的力学性能及易于加工成型等优点,在生物医用高分子、纺织行业、农用地膜和包装等行业应用前景广阔。

安徽同光邦飞开发原液着色纤维,解决聚乳酸纤维在染整过程中存在色牢度不牢的问题,针对聚乳酸纤维存放过程中强度降低问题,开发出抗水解、热降解母粒,已解决纤维因存放时间长强度衰减问题,积极开发差别化纤维。

(2)聚羟基脂肪酸酯(PHA)具有良好的生物可降解性、生物相容性和复合性,在医用纺织品领域的应用前景广阔。

(3)聚对苯二甲酸-己二酸丁二醇酯(PBAT)作为一种新兴的生物可降解聚酯材料,具有较好的可降解性、延展性、韧性和断裂伸长率等,是应用较多的生物降解材料之一。

(4)生物基丙二醇和生物基丁二酸是生物基原料中十分重要的两个组成。结合生物基原料开发一款可降解弹性纤维,既可满足国家双碳战略的发展要求,又可以拓展生物基原料在降解材料领域的应用,在一定程度上填补目前市场上可降解弹性纤维材料的空白,为公司创造一定的经济收益。

创新中心一直关注可降解材料领域前沿动态,提前布局生物基可降解材料的开发,依托盛虹集团自主生产的生物基丙二醇和生物基丁二酸的优势,设计合成了聚对苯二甲酸-丁二酸-丙二醇酯,并对其各项性能进行了研究和分析,初步评估其产业化有一定的可行性。

7. 高性能生物基纤维

近年来,高性能纤维绿色转型的重要性也愈发凸显,生物相容性和生物可降解的高强度再生生物基纤维在多个领域引起了广泛关注。然而,现有的再生生物基纤维的力学性能尚不尽人意,这导致了其应用受到限制。由于强度和韧性往往相互制约,因此要实现再生生物基纤维的高强度与高韧性兼备仍然是一项巨大挑战。

为了解决资源有限的问题,目前已经开发出各式各样的策略来设计强韧的生物纤维。

DSM Dyneema宣布了基于生物的Dyneema纤维等级,并提出“根据我们对可持续未来的承诺,我们开发了第一个基于生物的超高分子量聚乙烯纤维”。

浙江大学柏浩、陈东,中国科学院刘凯研究团队,指出许多天然纤维具有轻质、高强、高韧的特点,其性能优势源于从分子到宏观尺度的多级结构。生产这些纤维的纺丝系统也非常高效,为研究人员利用人工纺丝制备高性能生物基纤维提供了诸多灵感。此外,其还被赋予一系列新功能,从而拓展了其在智能织物、电子传感、生物医学等领域的应用。

浙江大学陈东教授团队以富含丝氨酸和酪氨酸等富含活性氨基酸的再生丝素蛋白为基质,通过微流控湿法纺丝技术,打造出拥有强韧的力学性能的材料。经过相关优化和后拉伸处理后,双重交联纤维还展现出了良好的温度适应性,抗疲劳性、生物相容性和生物降解性,是作为手术缝合线的理想选择。

中国科学家用转基因蚕合成的蜘蛛丝覆盖了类似天然蜘蛛丝表面的保护层,且比防弹背心中使用的凯夫拉(芳纶)纤维坚韧6倍。这是人们首次用蚕成功生产全长蜘蛛丝蛋白,研究展示了可用来制造商业合成纤维环保替代品的新技术。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号