问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

LangChain实战:向量化存储与实际应用案例

创作时间:
作者:
@小白创作中心

LangChain实战:向量化存储与实际应用案例

引用
1
来源
1.
https://www.cnblogs.com/wzkicu/p/18444065

向量存储(Vector stores)是AI领域中一个重要的技术组件,主要用于存储和索引由AI模型生成的向量嵌入。本文将详细介绍如何使用LangChain中的Chroma向量数据库,通过Loader加载文档,使用OpenAIEmbeddings进行嵌入,并与ChatOpenAI和ChatGLM3进行集成。同时,还将展示如何使用Flask开发一个简单的API服务来查询和检索信息。

背景描述

向量存储,也称为向量数据库,是专门设计用于高效存储和索引由人工智能模型生成的向量嵌入的数据库。这些嵌入是表示数据点在多维空间中的高维向量,捕获复杂的语义关系。向量数据库擅长处理大量的高维嵌入数据,这在大型语言模型(LLMs)如GPT、Bard、Claude和LLaMA的背景下尤其有用。

安装依赖

pip install chromadb
# pip install faiss-cpu 的代码也差不多 都是向量数据库

编写代码

from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.vectorstores import Chroma

# Load the document, split it into chunks, embed each chunk and load it into the vector store.
raw_documents = TextLoader('./state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
db = Chroma.from_documents(documents, OpenAIEmbeddings())

# similarity search
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content)

# similarity search by vector
embedding_vector = OpenAIEmbeddings().embed_query(query)
docs = db.similarity_search_by_vector(embedding_vector)
print(docs[0].page_content)

实际案例

有一个系统的构建说明说,,类似于需求书类型的内容,大约10万字。
目前我想询问当中的一些内容,比如在我开发系统中,可以提问:某某功能介绍一下。
此时,要回答当时建设需求中的文本内容,通过大模型进行检索和增强,来实现。
实现了如下的一些内容:

  • 通过DocumentLoader 加载了 word 文档
  • 通过 OpenAI Embedding 或 开源的 text2vec-base-chinese 对数据进行向量化处理
  • 持久化向量过的内容
  • 利用LangChain开发整体的功能
  • 使用了 ChatOpenAI,也配置了 ChatGLM3 的方式(本地部署安全且免费)
  • 简易的Flask服务,开发一个GET的方式请求,方便接口调用并返回。
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.llms import OpenAI
from langchain_community.llms.chatglm3 import ChatGLM3
from langchain_community.document_loaders import Docx2txtLoader
from langchain_core.output_parsers import JsonOutputParser
from operator import itemgetter
from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string
from langchain_core.prompts import format_document
from langchain_core.runnables import RunnableParallel, RunnablePassthrough, RunnableLambda
from langchain_openai.chat_models import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.vectorstores import DocArrayInMemorySearch
from langchain.memory import ConversationBufferMemory
import langchain.tools
from flask import Flask

need_embedding = False
persist_directory = 'chroma'

if need_embedding:
    # 加载Word文档并提取文本
    # loader = UnstructuredWordDocumentLoader("./short.docx")
    loader = Docx2txtLoader("./short.docx")
    documents = loader.load()

    # 将文本分割成块
    text_splitter = CharacterTextSplitter(chunk_size=2000, chunk_overlap=500)
    texts = text_splitter.split_documents(documents)

    # 初始化向量存储和嵌入
    # embeddings = OpenAIEmbeddings()
    embeddings = HuggingFaceEmbeddings(model_name='./text2vec-base-chinese')
    db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)

    # 保存向量存储
    db.persist()
else:
    # 加载向量存储
    # embeddings = OpenAIEmbeddings()
    embeddings = HuggingFaceEmbeddings(model_name='./text2vec-base-chinese')
    db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)

# 定义检索器和生成器
retriever = db.as_retriever()

# qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=retriever)
#
# # 处理用户查询
# query = "全息智能感知"
# result = qa.run(query)
# print(result)
# =====================================
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its orignal language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
template = """Answer the question based only on the following context, 请用中文回复:
{context}
Question: {question}
"""
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")

def llm():
    result = ChatOpenAI(temperature=0.8)
    # endpoint_url = "http://10.10.7.160:8000/v1/chat/completions"
    # result = ChatGLM3(
    #     endpoint_url=endpoint_url,
    #     max_tokens=2048,
    # )
    return result

def _combine_documents(
    docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
):
    doc_strings = [format_document(doc, document_prompt) for doc in docs]
    return document_separator.join(doc_strings)

_inputs = RunnableParallel(
    standalone_question=RunnablePassthrough.assign(
        chat_history=lambda x: get_buffer_string(x["chat_history"])
    )
    | CONDENSE_QUESTION_PROMPT
    | llm()
    | StrOutputParser(),
)

memory = ConversationBufferMemory(
    return_messages=True, output_key="answer", input_key="question"
)

# First we add a step to load memory
# This adds a "memory" key to the input object
loaded_memory = RunnablePassthrough.assign(
    chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter("history"),
)

# Now we calculate the standalone question
standalone_question = {
    "standalone_question": {
        "question": lambda x: x["question"],
        "chat_history": lambda x: get_buffer_string(x["chat_history"]),
    }
    | CONDENSE_QUESTION_PROMPT
    | llm()
    | StrOutputParser(),
}

# Now we retrieve the documents
retrieved_documents = {
    "docs": itemgetter("standalone_question") | retriever,
    "question": lambda x: x["standalone_question"],
}

# Now we construct the inputs for the final prompt
final_inputs = {
    "context": lambda x: _combine_documents(x["docs"]),
    "question": itemgetter("question"),
}

# And finally, we do the part that returns the answers
answer = {
    "answer": final_inputs | ANSWER_PROMPT | llm(),
    "docs": itemgetter("docs"),
}

# And now we put it all together!
final_chain = loaded_memory | standalone_question | retrieved_documents | answer

# flask
app = Flask(__name__)

@app.route("/get/<question>")
def get(question):
    inputs = {"question": f"{question}"}
    result = final_chain.invoke(inputs)
    # print("=============================")
    print(f"result1: {result}")
    return str(result['answer'])

app.run(host='0.0.0.0', port=8888, debug=True)
© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号