深度学习中的梯度下降法和随机搜索:AI优化算法详解
创作时间:
作者:
@小白创作中心
深度学习中的梯度下降法和随机搜索:AI优化算法详解
引用
CSDN
1.
https://blog.csdn.net/weixin_33324696/article/details/144057570
在深度学习的世界里,模型优化就像是在寻找一条通往最优解的路径。梯度下降法和随机搜索就是AI工程师手中的两把钥匙,它们分别以不同的方式帮助模型找到最佳参数配置。本文将用最通俗易懂的语言,带你走进这两个核心优化算法的世界。
梯度下降法:AI的“导航仪”
梯度下降的概念
梯度下降法是深度学习中用来优化模型参数的核心算法。它的目标是找到损失函数的最小值,通俗地说,就是找到让预测结果与真实结果“误差最小”的那组参数配置。
想象你站在一座大山的山顶上,而你的任务是找到山谷(最低点,也就是损失函数的最小值)。梯度下降就像一部导航仪,它告诉你每一步往哪个方向走才能离山谷更近。
图片来源:《深入浅出神经网络与深度学习 -- 迈克尔·尼尔森》
工作原理
- 损失函数:梯度下降的“山”是由损失函数定义的。损失函数衡量模型的预测值和真实值的差异,差异越大,说明模型表现越差。
- 梯度(Gradient):梯度是损失函数在当前点的“坡度”,也就是“山坡的斜度”。通过计算梯度,我们可以知道要往哪个方向走,能让损失更快减少,也就是最快到达谷底,到达谷底时,梯度为零。
- 下降(Descent):梯度下降算法的核心思想是“朝着斜度最陡的方向往下走”。斜度越大,下降得越快,也就越快能够到达谷底;在斜度(坡度)最大,我们迈的步子可以大一些,但接近谷底时,斜度(坡度)逐渐降低,当斜度逐渐变平时,步子需要变小,防止一下子跨过了谷底。
梯度下降的类型
- 批量梯度下降(Batch Gradient Descent):每次计算全部数据的梯度,更新一次参数,适合小数据集,但计算量大。
- 随机梯度下降(Stochastic Gradient Descent, SGD):每次只用一个数据样本计算梯度,参数更新更频繁,适合大数据集,但会有些“抖动”。
- 小批量梯度下降(Mini-batch Gradient Descent):结合以上两者,每次使用一小部分数据计算梯度,平衡了计算效率和稳定性。
随机搜索:AI的“蒙眼投骰子”
随机搜索的概念
随机搜索是一种优化方法,特别适合在不知道目标函数形状时,快速尝试各种可能的参数组合。它的核心思想是“随机选择参数,然后看看哪个效果最好”。
如果梯度下降像有导航仪的登山,那随机搜索就是蒙着眼睛随便乱走,虽然有点“盲目”,但在某些情况下也能意外找到低谷。
工作原理
- 定义参数范围:首先确定每个参数的取值范围,比如学习率在(0.001, 0.1)之间。
- 随机采样:从这些范围内随机挑选参数组合。
- 评估性能:用这些参数组合训练模型,看看哪组参数让模型效果最好。
- 重复:多次随机采样,逐渐收集表现较好的参数组合。
举个栗子
想象你是一位厨师,正在尝试制作一种新甜点,但你不知道糖、奶油和面粉的比例:
- 随机搜索的做法就是:每次随机加不同的糖和奶油比例,试着烤一批,然后品尝结果。
- 经过多次尝试后,你发现了某种比例(比如:糖1勺,奶油2勺)做出的甜点最美味,这就是你的“最优参数”。
随机搜索的优缺点
- 优点:
- 简单易用,不需要梯度信息。
- 对高维参数空间(多个参数)的优化有一定效果。
- 缺点:
- 需要大量尝试,效率较低。
- 在复杂的优化问题上,可能不如梯度下降精准。
梯度下降和随机搜索的比较
特点 | 梯度下降法 | 随机搜索 |
|---|---|---|
适用场景 | 适合可导的、连续的损失函数 | 参数范围不明确或函数不可导 |
计算效率 | 高效,但需要梯度信息 | 相对低效,完全依赖试错 |
优缺点 | 精确高效,但可能陷入局部最小值 | 简单灵活,但需要大量计算资源 |
类比 | 按地图指引找山谷(有目标地找) | 蒙着眼睛乱走(试试看能不能找到) |
两者的结合:实际中的应用
在深度学习中,梯度下降法用于模型的核心训练(调整权重),而随机搜索通常用于调整超参数(例如学习率、网络层数等),因为超参数通常不参与梯度计算。现代AI实践中还会结合网格搜索(Grid Search)或贝叶斯优化,让参数调整更加智能化。
热门推荐
哪些瑜伽动作有助于瘦脸
闯绿灯后怎么处罚以及避免
宿根福禄考的养殖方法和注意事项
分层强化学习(Hierarchical RL)总结篇
长期吃二甲双胍,小心它这个副作用!
参加高考的考生如何调节心态?
全员深造!量子信息科学专业迎来首届毕业生
深入解析螺杆空压机:探索其几大机组系统
电脑死机不用慌,这些妙招让你轻松搞定!
哪些因素影响公务员的薪资待遇?
如何应对杨柳飞絮?党报送您这份防护指南→
如何评估驾校的教学质量?这种驾校在学员培训中有哪些实际效果?
《黑神话:悟空》深度通关技巧与策略解析
喵星人分类指南,你选对了吗?
虚拟机如何运行原神游戏
港大研AI预测心脑血管疾病风险
多发性脂肪瘤的可能成因是什么
肠道胀气疼痛原因有哪些
离婚后户口迁移有哪些规定?不迁户口会有哪些影响?
高锰酸钾养花用途(给花儿经常喂点这4种药水,花儿10年不烂根)
5kw电饼铛需要多少平方的线?家庭电路改造指南
服务器负载均衡中的会话保持与状态管理:确保连续用户体验的策略
4家银行面临解散,存款取不出来?建议储户了解这4点,存钱放心
基差的使用时机是什么?如何利用基差优化交易策略?
高风险唐筛结果的处理方式是什么?
从数学神经元到硅基文明:人工智能进化史诗
植物大战僵尸2:机枪豌豆全方位解析
隔离开关和断路器的区别是什么
公务员在职研究生报销条件是什么?
沥青和柏油是一样的吗?关键区别和应用