L1正则化与L2正则化对比解析
创作时间:
作者:
@小白创作中心
L1正则化与L2正则化对比解析
引用
CSDN
1.
https://blog.csdn.net/2401_86968005/article/details/145833812
L1正则化和L2正则化是机器学习中常用的两种正则化方法,它们在模型训练中起到防止过拟合、特征选择等重要作用。本文将从数学表达式、几何解释、应用场景等多个维度,深入对比分析这两种正则化方法的异同,帮助读者更好地理解它们在实际应用中的选择和使用。
L1正则化与L2正则化对比解析
一、数学表达式
1. L1正则化(Lasso)
J ( θ ) = 原始损失函数 + λ ∑ i = 1 n ∣ θ i ∣ J(\theta) = \text{原始损失函数} + \lambda \sum_{i=1}^n |\theta_i|J(θ)=原始损失函数+λi=1∑n ∣θi ∣
- λ \lambdaλ:正则化强度参数
- ∣ θ i ∣ |\theta_i|∣θi ∣:模型参数的绝对值之和
2. L2正则化(Ridge)
J ( θ ) = 原始损失函数 + λ ∑ i = 1 n θ i 2 J(\theta) = \text{原始损失函数} + \lambda \sum_{i=1}^n \theta_i^2J(θ)=原始损失函数+λi=1∑n θi2
- θ i 2 \theta_i^2θi2 :模型参数的平方和
二、核心作用对比
特性 L1正则化 L2正则化
参数约束形式 绝对值之和 平方和
解的空间形状 菱形(高维下为多面体) 圆形(高维下为超球体)
参数稀疏性 产生稀疏解(部分参数精确为0) 参数趋向较小值但不为0
特征选择能力 自动执行特征选择 保留所有特征
计算复杂度 优化复杂(需次梯度方法) 计算高效(处处可导)
鲁棒性 对异常值敏感 对异常值较稳定
三、几何解释
1. 二维参数空间可视化
- L1约束区域:损失函数等高线与菱形顶点相交时,易产生零值参数
- L2约束区域:最优解通常在坐标轴附近但非零点
2. 高维推广
- L1正则化:多面体顶点位于坐标轴,导致稀疏性
- L2正则化:超球面平滑,参数均匀收缩
四、优缺点分析
1. L1正则化
优点:
- 自动特征选择,适合高维数据降维
- 生成可解释的稀疏模型
- 抑制过拟合的同时减少计算开销
缺点:
- 不适用于特征高度相关的情况(可能随机选择一个特征)
- 优化计算复杂(需使用坐标下降等特殊方法)
- 当特征数>样本数时最多选择n个特征
2. L2正则化
优点:
- 保持特征间的平衡关系
- 对多重共线性数据更稳定
- 优化简单(标准梯度下降即可)
- 理论性质更优(唯一解)
缺点:
- 无法进行特征选择
- 对无关特征只能缩小影响不能消除
- 需要更多存储空间保存所有参数
五、应用场景
1. L1正则化典型场景
- 特征数量远大于样本数(基因组数据、文本分类)
- 需要明确特征重要性的业务场景(医疗诊断、金融风控)
- 部署环境对模型大小敏感(移动端模型压缩)
2. L2正则化典型场景
- 特征数量与样本量相当或更少
- 特征间存在中低度相关性(房价预测、用户画像)
- 需要稳定解的工业级模型
- 神经网络常规正则化手段
六、实践建议
1. 参数选择
- λ值调优:通过交叉验证选择,通常L1的λ范围比L2小1-2个数量级
- 组合使用:Elastic Net(L1+L2)平衡两种正则化优势
J(θ) = 原始损失 + λ1|θ| + λ2θ²
2. 实现注意
- L1优化技巧:使用坐标下降、前向后向分裂(FISTA)算法
- 计算加速:对L2正则化可利用矩阵求逆引理加速计算
- 标准化预处理:正则化前需对特征标准化(避免尺度影响惩罚项)
七、数学本质
1. L1稀疏性证明
在贝叶斯框架下:
- L1等价于参数服从拉普拉斯先验分布
p ( θ ) ∝ e − λ ∣ θ ∣ p(\theta) \propto e^{-\lambda|\theta|}p(θ)∝e−λ∣θ∣ - 拉普拉斯分布在零点处有峰,促进稀疏性
2. L2收缩性证明
- 对应高斯先验分布
p ( θ ) ∝ e − λ θ 2 p(\theta) \propto e^{-\lambda\theta^2}p(θ)∝e−λθ2 - 高斯分布对参数进行软性收缩
总结:L1正则化通过特征选择生成简洁模型,L2正则化通过参数收缩保持模型稳定性。实际应用中需根据数据特性和业务需求选择,也可结合两者优势使用Elastic Net。
热门推荐
松江医生教你抗炎饮食,告别药物副作用
消炎药和抗菌药,你用对了吗?
妙佑医疗教你如何通过饮食预防消化问题
世界杯期间如何用中医调理缓解消化不良?
秋冬肠胃不适?教你快速自查!
深圳十大特色美食:从光明乳鸽到宝安云片糕
冬季打卡重庆,金牌导游带你玩转山城!
重庆旅游新宠:解放碑、洪崖洞、磁器口古镇
哥伦比亚大学校徽,历史、象征与深远意义
乐居长安:唐都长安人的日常生活
冬日山西深度游:从五台山到平遥古城
每天了解一个城市—河北·沧州,“武术之乡”和“世界杂技艺术的摇篮”
蠡园冬日打卡攻略:四季妙亭、千步长廊、西施映月必拍!
驻马店必打卡:《西游记》取景地——嵖岈山
蠡园四季美景,你最爱哪一季?
秋冬打卡蠡湖:邂逅红嘴鸥,尽享最美江南风光
秋冬自驾游前,长安马自达教你做好车辆保养
从威海到驻马店:嵖岈山自驾游攻略
驻马店冬日自驾游攻略:嵖岈山与南海禅寺必打卡!
胃炎患者如何快速恢复食欲?
春节吃出健康:中医教你调节进食节奏
抑郁症患者的快速进食之谜:从健康隐患到心理剖析
景德镇陶瓷之旅:茶馆、陶吧与手工艺体验
2024景德镇陶博会:千年瓷都再展辉煌
驻马店必打卡美食:确山凉粉&曹运洪胡辣汤
冬日暖游驻马店:美景美食全攻略
驻马店打卡圣地:嵖岈山奇石探秘
驻马店必打卡:嵖岈山的绝美风景
【春晚评论】丝路春晚:穿越古今 融通丝路
当舞蹈“装裱入画”,丹青之境绘出无尽风雅