问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

数学常用符号参考手册

创作时间:
作者:
@小白创作中心

数学常用符号参考手册

引用
1
来源
1.
https://www.ppmy.cn/news/903261.html

本文是一篇全面的数学符号参考手册,涵盖了从基础到高级的各种数学符号,包括几何符号、代数符号、运算符号、集合符号等。文章不仅列出了各种符号,还提供了它们的读音和具体含义,适合数学学习者和研究者作为参考工具。

数学常用符号参考手册

1. 几何符号

⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △

2. 代数符号

∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶

3. 运算符号

如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。

4. 集合符号

∪ ∩ ∈

5. 特殊符号

∑ π(圆周率)

6. 推理符号

|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123

7. 数量符号

如:i,2+i,a,x,自然对数底e,圆周率π。

8. 关系符号

如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆ ⊂ ⊇ ⊃”是“包含”符号等。

9. 结合符号

如小括号“()”中括号“[]”,大括号“{}”横线“—”

10. 性质符号

如正号“+”,负号“-”,绝对值符号“| |”正负号“±”

11. 省略符号

如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

12. 排列组合符号

C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘 ,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列

13. 离散数学符号

├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
∈ 属于(??不属于)
P(A) 集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
(或下面加 ≠) 真包含
∪ 集合的并运算
∩ 集合的交运算

  • (~) 集合的差运算
    〡 限制
    X 集合关于关系R的等价类
    A/ R 集合A上关于R的商集
    [a] 元素a 产生的循环群
    I (i大写) 环,理想
    Z/(n) 模n的同余类集合
    r(R) 关系 R的自反闭包
    s(R) 关系 的对称闭包
    CP 命题演绎的定理(CP 规则)
    EG 存在推广规则(存在量词引入规则)
    ES 存在量词特指规则(存在量词消去规则)
    UG 全称推广规则(全称量词引入规则)
    US 全称特指规则(全称量词消去规则)
    R 关系
    r 相容关系
    R○S 关系 与关系 的复合
    domf 函数 的定义域(前域)
    ranf 函数 的值域
    f:X→Y f是X到Y的函数
    GCD(x,y) x,y最大公约数
    LCM(x,y) x,y最小公倍数
    aH(Ha) H 关于a的左(右)陪集
    Ker(f) 同态映射f的核(或称 f同态核)
    [1,n] 1到n的整数集合
    d(u,v) 点u与点v间的距离
    d(v) 点v的度数
    G=(V,E) 点集为V,边集为E的图
    W(G) 图G的连通分支数
    k(G) 图G的点连通度
    △(G) 图G的最大点度
    A(G) 图G的邻接矩阵
    P(G) 图G的可达矩阵
    M(G) 图G的关联矩阵
    C 复数集
    N 自然数集(包含0在内)
    N* 正自然数集
    P 素数集
    Q 有理数集
    R 实数集
    Z 整数集
    Set 集范畴
    Top 拓扑空间范畴
    Ab 交换群范畴
    Grp 群范畴
    Mon 单元半群范畴
    Ring 有单位元的(结合)环范畴
    Rng 环范畴
    CRng 交换环范畴
    R-mod 环R的左模范畴
    mod-R 环R的右模范畴
    Field 域范畴
    Poset 偏序集范畴

集合符号

∪ ∩ ∈ ⊆ ⊂ ⊇ ⊃ ∨ ∧ ∞ Φ

∪  并
∩  交
⊂  A属于B
⊃  A包括B
∈  a∈A,a是A的元素
⊆  A⊆B,A不大于B
⊇  A⊇B,A不小于B
Φ  空集
R  实数
N  自然数
Z  整数
Z+ 正整数
Z-  负整数

常用数学符号读法

大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
∧ λ lambda lambda 兰姆达
Μ μ mu miu 缪
Ν ν nu niu 纽
Ξ ξ xi ksi 可塞
Ο ο omicron omikron 奥密可戎
∏ π pi pai 派
Ρ ρ rho rou 柔
∑ σ sigma sigma 西格马
Τ τ tau tau 套
Υ υ upsilon jupsilon 衣普西隆
Φ φ phi fai 斐
Χ χ chi khai 喜
Ψ ψ psi psai 普西
Ω ω omega omiga 欧米伽

数学符号的种类

数量符号

如:i,2+i,a,x,自然对数底e,圆周率π。

运算符号

如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。

关系符号

如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“?”是“包含”符号等。

结合符号

如小括号“()”中括号“[]”,大括号“{}”横线“—”

性质符号

如正号“+”,负号“-”,绝对值符号“| |”正负号“±”

省略符号

如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幂(A,Ac,Aq,x^n)等。

排列组合符号

C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120
C-Combination-组合
A-Arrangement-排列

数学符号中英文名称大全

+  plus 加号;正号
-  minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is equal to or approximately equal to 等于或约等于号
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than 大于号
≮ is not less than 不小于号
≯ is not more than 不大于号
≤ is less than or equal to 小于或等于号
≥ is more than or equal to 大于或等于号
%  per cent 百分之…
‰ per mill 千分之…
∞ infinity 无限大号
∝ varies as 与…成比例
√ (square) root 平方根
∵ since; because 因为
∴ hence 所以
∷ equals, as (proportion) 等于,成比例
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
π pi 圆周率
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ union of 并,合集
∩ intersection of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
″ second 秒
℃ Celsius system 摄氏度

常用数学符号

常用数学符号
+-×÷﹢﹣±/=≈≡≠∧∨∑∏∪∩∈⊙⌒⊥∥∠∽≌<>≤≥≮≯∧∨√﹙﹚[]﹛﹜∫∮∝∞⊙∏º¹²³⁴ⁿ₁₂₃₄·∶½⅓⅔¼¾⅛⅜⅝⅞∴∵∷αβγδεζηθικλμνξοπρστυφχψω%‰℅°℃℉′″¢〒¤○㎎㎏㎜㎝㎞㎡㎥㏄㏎mlmol㏕Pa$£¥㏒㏑壹贰叁肆伍陆柒捌玖拾微毫厘分百千万亿兆吉
几何符号
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
运算符号
× ÷ √ ±
集合符号
∪ ∩ ∈ ⊆ ⊂ ⊇ ⊃
特殊符号
∑ π(圆周率)
推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨

微积分:常用公式、微分方程、级数

微积分
直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。

一.基本初等函数求导公式

二.函数的和、差、积、商的求导法则

三.反函数求导法则

四.复合函数求导法则

五、基本积分表

六、常用凑微分公式

七、常用的求导和定积分公式(完美)

分部积分
不定积分的分部积分

八、分部积分法

定积分的分部积分

九、微分方程

十、级数收敛与发散

十一、微分中值定理

令f(x)为连续且光滑,任取其上两点(a, f(a))与(b, f(b)),a < b,那么在这两端点之间必定存在一点(c, f(c)), a < c < b,使得过c的切线斜率等于该二端点割线的斜率,即

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号