问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

深度学习之视觉特征提取器——AlexNet

创作时间:
作者:
@小白创作中心

深度学习之视觉特征提取器——AlexNet

引用
CSDN
1.
https://blog.csdn.net/m0_61787307/article/details/138488706

AlexNet

参考资料:
(1)ImageNet十年历任霸主之AlexNet - 知乎 (zhihu.com)
(2)AlexNet - Wikipedia

引入

AlexNet在2012年以第一名在Top-1分类精度霸榜ImageNet,并超过第二名近10个百分点。值得注意的是,霸榜2013年的ZFNet实际上是对AlexNet进行调参后得到的更好结果。相比于早期的LeNet实现的十分类,AlexNet能够成功进行一千分类并且达到了一个新的高度。此外,AlexNet证明了神经网络的深度对模型效果至关重要,并且可以利用GPU大大加速这一过程。

尽管AlexNet的知名度和热度可能不如VGG,但其里程碑意义不容忽视。AlexNet不仅在效果上有所突破,更重要的是,它引入了归一化思想、Dropout和ReLU的应用,以及深层网络利用GPU加速等关键技术创新,为后续的研究提供了坚实的基础。

模型结构

AlexNet 包含八层:前五层是卷积层,其中一些是最大池化层,后三层是全连接层。除最后一层外,网络被拆分为两个部分,每个部分在一个 GPU 上运行。整个结构可以写成:

( C N N → L R N → M P ) 2 → ( C N N 3 → M P ) → ( F C → D O ) 2 → L i n e a r → S o f t m a x

其中各个字母分别代表着:

  • CNN = 卷积层(后面紧接着激活函数 ReLU)
  • LRN = 局部响应归一化(Local Response Normalization)
  • MP = 最大池化(Maxpooling)
  • FC = 全连接层(后面紧接着激活函数 ReLU)
  • 线性 = 全连接层(未激活)
  • DO = 随机丢失(Dropout)

更为详细的结构图如下所示:

局部响应归一化(Local Response Normalization)是一种归一化方式,主要针对的是卷积核不同通道上相同位置的参数。用数学公式表示就是:

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号