正态性检验方法详解
创作时间:
作者:
@小白创作中心
正态性检验方法详解
引用
CSDN
1.
https://blog.csdn.net/u012114900/article/details/138193886
正态性检验是统计分析中的一个重要环节,特别是在进行t检验、方差分析等参数检验时,需要确保数据满足正态分布的假设。本文将详细介绍多种正态性检验方法,包括图示法和概率统计法,并讨论偏度和峰度在正态性检验中的应用。
参数检验与非参数检验
t检验、方差分析(ANOVA)等参数检验都有一个共同的前提条件:样本数据必须服从正态分布,即样本数据必须来源于一个正态分布的总体。若样本数据不服从正态分布,就不能用以上参数检验对数据进行分析,而应该使用非参数检验(如卡方检验、置换检验等)。
- 参数检验:t检验、方差分析(ANOVA)
- 非参数检验:正态检验
图示法
图示法是一种直观的正态性检验方法,主要包括直方图和QQ图。
- 直方图:通过绘制数据的频率分布直方图,并拟合正态分布曲线。需要注意的是,当数据量较少时,直方图的参考价值有限。
- QQ图:QQ图(Quantile-Quantile Plot)是通过比较样本数据的分位数与理论正态分布的分位数来判断数据是否服从正态分布。如果QQ图上的点都大致落在一条直线上,表示高度正相关,即这些数据是正态分布的。且该直线的斜率为标准差,截距为均值。
概率统计法
概率统计法通过计算样本数据与理论正态分布之间的差异来判断正态性。主要包括以下几种方法:
基于经验分布函数(EDF)
- Kolmogorov-Smirnov检验(K-S检验)
- 计算经验分布和理论分布之间的最大距离作为检验统计量。
- 适用于样本量大于2000的情况。
- 需要指定总体的均值和方差。
- 可用于检验其他任何分布。
- Lilliefors检验
- 通过计算经验分布函数与理想累积分布函数之间的最大差异来进行检验。
- 直接利用样本的均值和方差进行计算。
- 最适用于对称分布的小样本,也适用于大样本。
- 仅适用于正态性检验。
- Anderson-Darling检验(AD检验)
- 通过计算数据的累积分布曲线与理想正态分布的累积分布曲线之间的差异来进行检验,且考虑了两条累积分布曲线之间的所有差异。
- 比K-S检验效果更好。
- 仅适用于小样本,推荐样本量小于26。
- 但有些超过200的工业数据也有可能通过A-D检验。
- 可用于检验其他分布。
基于卡方分布
- D'Agostino's K-squared检验(偏度-峰度检验)
- 通过计算偏度(Skewness)和峰度(Kurtosis)来量化数据分布曲线与标准正态分布曲线之间的差异与不对称性。
- 适用于大样本。
- 仅能用于正态性检验。
- Jarque-Bera检验
- 必须用于大样本(样本量小于2000时,显著性水平会从0.001跌到0.5)。
- 只能用于正态性检验。
基于回归和相关
- Shapiro-Wilk检验(SW检验)
- 在每一个样本值都是唯一时的检验效果最好,但若样本中存在几个值重复的情况下该方法便会大打折扣。
- 只适用于小样本,推荐样本量为7~2000。当样本量超过5000时不再适用。
- MATLAB函数源下载:swtest()函数使用:When the series ‘X’ is Leptokurtic, SWTEST performs the Shapiro-Francia test, else (series ‘X’ is Platykurtic) SWTEST performs the Shapiro-Wilk test.
偏度与峰度
峰度是一种统计量,用于衡量分布包含异常值的程度。峰度是分布形状的无单位度量。峰度分为三种:尖峰、平峰和中峰。
- 尖峰分布(Leptokurtic distributions):具有比正态分布更高的峰度。这些分布具有“重尾”,表明它们具有相对较长的尾部,包含更多异常值。
- 平峰分布(Platykurtic distributions):具有更短且包含更少极值的“轻尾”。
- 中峰分布(Mesokurtic distributions):与正态分布的峰度相同。
经验总结
- 当样本量较大时通常会选择 K-S-L检验或 D’Agostino’s K-squared检验。
- 当样本量较小时通常选用 AD检验或 SW检验。
- 在实际操作中可以根据样本量大小选择多种检验方法进行正态性检验,同时通过QQ图等图示法辅助判断。
热门推荐
潮州春季自驾攻略:凤凰山天池杜鹃花正盛,茶文化体验正当时
零基础也能做出6⭐级红烧肉!
百岁夫妻揭秘:红烧肉的长寿秘密
自制猪皮冻:富含胶原蛋白的冬季护肤美食攻略
中级职称证书:职场人职业发展的关键里程碑
2024中级会计职称考试:三大科目大纲调整,2025年政策提前看
中级经济师证书含金量曝光:职称评定、积分落户等六大福利
马斯克慈善基金会被指“自私”,近半捐赠流向SpaceX相关项目
冬游三亚大小洞天:热带海景、800年石刻与珍稀博物馆全攻略
三亚大小洞天:冬日里的海景山色与八百年道观
三亚大小洞天:千年道家文化与热带滨海风光的完美融合
深秋三亚大小洞天:海岛度假与八百年道观的完美融合
栀子花的象征意义及文化内涵(以花代言)
花卉在生态环境中的作用与种植指南
玫瑰花的不同品种及其栽培特点
繁星花的栽种技巧和日常养护
中高考复习五大技巧:从计划制定到模拟考试全攻略
家长如何帮助孩子缓解高考焦虑?5个实用方法在这里
云南建水元阳梯田旅游攻略2025,建水到元阳梯田路况怎么样
科技股市盈率持续走高,专家提醒理性投资防范风险
市盈率在科技股投资中的应用:机遇与风险并存
用市盈率选好股:三位投资大师的实战策略
一文读懂体温测量:各部位正常值与腋下测温法
解密抑郁症发热:六大阶段揭示情绪与体温关联
重庆十大特色零食全攻略:从江津米花糖到怪味胡豆
选人用人导向对员工职业发展的影响有哪些?
胰腺癌早期预警与治疗指南:从症状识别到最新疗法
黑化与拯救:二次元作品中的心理剖析
裸奔的馒头新作:黑化反派的逆袭之路
橡胶制品行业污染治理:从技术创新到管理提升