量化交易策略的实现_均值回归策略
创作时间:
作者:
@小白创作中心
量化交易策略的实现_均值回归策略
引用
CSDN
1.
https://blog.csdn.net/2301_80651329/article/details/141353132
均值回归策略是一种基于金融资产价格会围绕其长期均值波动的交易方法。这种策略认为,资产价格在短期内可能会偏离其均值,但最终会回归到均值附近。交易者可以通过识别这种偏离并采取相反方向的交易来捕捉利润。
一:均值回归策略的理解
均值回归策略的基本原理是资产价格将围绕其历史均值进行波动,当价格偏离其长期平均水平时,价格趋向于回归到其平均水平,价格的偏离程度越大,回归的力度越大。因此,可以通过采取反向交易的方式(即价格偏低时买入,价格偏高时卖出)来获取收益。
均值回归策略适用于那些价格波动大且具有均值回归特性的股票。交易者可以通过计算股票的均值和标准差来确定买入和卖出点位。当股票价格低于均值减去标准差时,可以考虑买入;当股票价格高于均值加上标准差时,可以考虑卖出。
二:均值回归策略的Python示例实现
以下是一个简单的Python实例,展示了如何实现一个基本的均值回归策略。这个例子使用了Pandas库来处理数据,并假设我们有一个包含股票价格的DataFrame。
在这个例子中,我们:
- 创建了一个包含随机股票价格的DataFrame。
- 计算了20天移动平均线和价格与移动平均线的差异。
- 定义了基于移动平均线和标准差的买入和卖出信号。
- 假设每次买入或卖出100股,并计算了投资组合的总价值。
请注意,这个例子仅用于演示目的,它没有考虑交易成本、滑点、资金借贷成本、流动性限制等因素,这些都是实际交易中需要考虑的重要方面。此外,真实世界中的策略需要通过历史数据进行回测,以验证其有效性。
先导入所需的库:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
这里导入了三个库:
- pandas:用于数据处理和分析。
- numpy:用于高效的数值计算。
- matplotlib.pyplot:用于绘制图表。
创建示例DataFrame
dates = pd.date_range('2020-01-01', periods=100)
df = pd.DataFrame(data={'price': np.random.normal(loc=100, scale=10, size=len(dates))}, index=dates)
df
- 使用pd.date_range生成一个日期范围,表示100个交易日。
- 使用np.random.normal生成一组服从正态分布的随机数,作为股票价格。
- 创建一个DataFrame df,其中包含一列名为price的股票价格。
计算移动平均线:
window_size = 20
df['moving_average'] = df['price'].rolling(window=window_size).mean()
- 定义一个窗口大小window_size为20天。
- 使用df['price'].rolling(window=window_size).mean()计算20天的移动平均线,并将结果存储在新的列moving_average中。
计算价格与移动平均线的差异:
df['difference'] = df['price'] - df['moving_average']
- 计算当前价格与移动平均线的差值,并将结果存储在新的列difference中。
定义交易信号:
df['std_dev'] = df['price'].rolling(window=window_size).std()
df['buy_signal'] = df['difference'] < -df['std_dev']
df['sell_signal'] = df['difference'] > df['std_dev']
df
- 计算移动平均线的标准差,并将结果存储在新的列std_dev中。
- 当价格低于移动平均线一个标准差时,标记买入信号buy_signal。
- 当价格高于移动平均线一个标准差时,标记卖出信号sell_signal。
初始化投资组合:
initial_capital = 10000
positions = pd.DataFrame(index=df.index).fillna(0)
portfolio = pd.DataFrame(index=df.index).fillna(0)
- 设置初始资金为10000。
- 创建一个空的DataFrame positions,用于记录持仓情况。
- 创建一个空的DataFrame portfolio,用于记录投资组合的价值。
交易逻辑
positions['stock'] = 100*df['buy_signal']
positions['stock'] = -100*df['sell_signal']
- 在买入信号出现时,买入100股。
- 在卖出信号出现时,卖出100股。
计算投资组合的价值
portfolio['positions'] = (positions.multiply(df['price'], axis=0))
portfolio['cash'] = initial_capital - (positions.diff().multiply(df['price'], axis=0)).cumsum()
portfolio['total'] = portfolio['positions'] + portfolio['cash']
portfolio
- 计算持仓价值positions乘以股票价格。
- 计算现金余额,初始资金减去买入和卖出股票的总成本。
- 计算投资组合的总价值,持仓价值加上现金余额。
打印最终资产价值
print(portfolio['total'][-1])
- 打印投资组合在最后一天的资产价值约为31892元,净赚21892元。
结果可视化
先绘制投资组合价值的图表:
plt.figure(figsize=(14, 7))
plt.plot(portfolio['total'], label='Portfolio Value')
plt.show()
再绘制股票价格、移动平均线的图表,而且标记买入和卖出信号的位置。
# 绘制价格和移动平均线的图表
plt.figure(figsize=(14, 7))
plt.plot(df['price'], label='Price', color='blue') # 绘制价格线
plt.plot(df['moving_average'], label='Moving Average', color='red') # 绘制移动平均线
# 标记买入和卖出信号
plt.scatter(df.index[df['buy_signal']], df['price'][df['buy_signal']], label='Buy Signal', marker='^', color='green')
plt.scatter(df.index[df['sell_signal']], df['price'][df['sell_signal']], label='Sell Signal', marker='v', color='red')
# 设置图表标题和图例
plt.title('Stock Price and Moving Average')
plt.legend()
# 显示图表
plt.show()
红点为卖出100股信号,绿点为买入100股信号。
这段代码实现了一个简单的均值回归交易策略,其中交易信号基于价格相对于其移动平均线的偏离程度。通过模拟交易,我们可以看到策略的表现,并通过图表直观地展示结果。
以上就是均值回归策略的Python示例实现。
热门推荐
频繁噩梦是大脑健康预警,研究揭示睡眠与认知衰退关联
海南琼海现极端降雨,高铁东线多趟列车停运
纤维蛋白原:止血界的超级英雄
纤维蛋白原检测:揭秘心血管健康的密码
健康生活,告别高纤维蛋白原
原神手游角色养成攻略:从基础到进阶,打造最强角色
《洛克王国:世界》2月底开启三端互通测试,经典IP续作重磅来袭
面肌痉挛让你眉毛狂跳?怎么办?
面肌痉挛:眉毛跳动的真凶?
洛克王国世界攻略大全,从零开始的第一天起号攻略,高手的养成秘诀
柿子糊塌炸柿饼制作秘籍(传统美食再现)
第三代社保卡换领指南:养老金发放注意事项全解析
电子社保卡赋能美好生活
古巴比伦创立48星座,奠定西方天文学基础
十二星座性格解析:白羊冲动,金牛稳重……
4000年前的天文智慧:古巴比伦如何奠定星座文化
十二星座:天文学视角下的文化符号
巴菲特投资哲学:企业管好自己的三大法宝
巴菲特投资苹果:从增持到减持的逻辑
巴菲特投资哲学中的五大金律:从股市到生活的智慧
广东省人民医院专家教你治反胃:药物治疗、腹部按摩和饮食调整三管齐下
冬季反胃吐酸水?试试这些饮食调理法
反酸不止?试试这些小妙招
新型催化剂助力酯化反应绿色发展
浓硫酸催化的酯化反应:原理、影响因素与工业应用
轮胎91V和94V到底怎么选?
汽车年审:轮胎型号合规指南
首届钱王祭祀大典在无锡举行,千年家训焕发新生
冬季颈椎病高发,这样做能有效预防
5.1万人齐聚天安门迎新年,多种交通方式助您轻松观礼