多重共线性检测:相关性系数矩阵和方差膨胀系数(VIF)分析学习
创作时间:
作者:
@小白创作中心
多重共线性检测:相关性系数矩阵和方差膨胀系数(VIF)分析学习
引用
1
来源
1.
https://cloud.tencent.com/developer/article/2449145
多重共线性是在多元线性回归分析中经常遇到的一个问题,它发生在当两个或更多的预测变量(自变量)在统计模型中高度相关。本文将详细介绍多重共线性的检测方法,包括相关性系数矩阵和方差膨胀系数(VIF)分析,并通过实际代码示例展示如何进行多重共线性检验。
多重共线性(Multicollinearity)是在多元线性回归分析中经常遇到的一个问题,它发生在当两个或更多的预测变量(自变量)在统计模型中高度相关。在这种情况下,这些变量之间的关系会影响模型对各个变量影响的准确评估,从而导致以下几个问题:
- 参数估计的不准确:由于变量之间的高度相关性,模型中的系数(参数)估计可能会变得非常不稳定。微小的数据变化可能导致估计值大幅波动。
- 系数解释困难:当变量彼此相关时,很难区分单个变量对因变量影响的独立效应。这会使得模型的解释变得复杂和模糊。
- 统计显著性的问题:共线性往往会增加参数的标准误差,这可能导致统计检验无法拒绝原假设,即使在实际中某些变量是有影响的。
检测多重共线性的常用方法
- 方差膨胀因子(VIF):这是最常用的检测多重共线性的量化方法。一般认为,VIF值大于5或者10表明存在严重的多重共线性,需要进一步处理。
- 容忍度(Tolerance):这是VIF的倒数,较低的容忍度值(通常小于0.1)表明高共线性。
- 相关系数矩阵:检查预测变量之间的相关系数。高度相关(例如,相关系数大于0.8或小于-0.8)可能指示共线性。
处理多重共线性的策略
- 移除变量:如果某些变量之间存在高共线性,可以考虑从模型中移除一些变量。
- 合并变量:将相关的变量合并为一个新变量,例如,通过计算几个相关变量的平均值。
- 增加样本量:有时增加样本量可以帮助减少共线性带来的影响,因为更多的数据提供了更多的信息,有助于更准确地估计模型参数。
- 正则化方法:使用如岭回归(Ridge Regression)或LASSO这类引入惩罚项的技术可以有效地处理共线性问题。
步骤流程
1. 导入数据
使用TCGA数据集进行演示:
rm(list = ls())
load("./est_data.Rdata")
dat_test <- est_data
head(dat_test)[1:5,1:5]
# ID OS EVA1A TNFAIP6
# TCGA-CR-7374-01A TCGA-CR-7374-01A 0 -1.28317273 -1.6738964
# TCGA-CV-A45V-01A TCGA-CV-A45V-01A 1 -0.85167331 -0.1011465
# TCGA-CV-7102-01A TCGA-CV-7102-01A 1 1.41296836 0.4649019
# TCGA-MT-A67D-01A TCGA-MT-A67D-01A 0 -0.06444696 0.8510312
# TCGA-P3-A6T4-01A TCGA-P3-A6T4-01A 1 -0.76278103 -0.3687546
dim(est_data)
# [1] 493 40
准备好一个含有结局变量和基因/临床参数(自变量)的数据。
2. 多重共线性检验
这里使用两种方法进行多重共线性检测,容忍度检测是VIF的倒数就不再演示了。
相关性系数矩阵
#相关性系数矩阵
colnames(dat_test)
library(PerformanceAnalytics)
chart.Correlation(dat_test[,c(4:41)], histogram=TRUE, method="pearson")
变量之间的相关性值一般认为要小于0.8,否则认为系数之间存在"严重"的共线性。如果变量较多时,不建议使用相关性系数矩阵,不然就会出现下图这样看不清的情况。
方差膨胀因子
# 方差膨胀因子
library(car)
colnames(dat_test)
# 找出除了ID,OS以外的所有变量
variables <- setdiff(names(dat_test), c("ID", "OS"))
# 把所有的变量用+连起来,并创建模型
e <- paste(variables, collapse = " + ")
full_formula <- as.formula(paste("OS ~", e)) #构建函数的时候一定要包含响应变量,其中的符号为“~”
M <- lm(full_formula, data = est_data)
vif_values <- vif(M)
#做图
library(ggplot2)
vif_data <- data.frame(Variable = names(vif_values), VIF = vif_values)
# 使用 ggplot2 绘制 VIF 值的条形图
png("VIF.png",width = 2000, height = 2800, res = 300)
ggplot(vif_data, aes(x = reorder(Variable, VIF), y = VIF, fill = VIF)) +
geom_bar(stat = "identity") +
theme_minimal() +
labs(title = "VIF Values", x = "Variables", y = "Variance Inflation Factor (VIF)") +
geom_hline(yintercept = 5, linetype = "dashed", color = "red",size = 3) +
#coord_flip()+ # 翻转坐标轴,使得条形图水平显示
theme(axis.text.x = element_text(angle = 45, hjust = 1),
axis.text = element_text(size = 10), # 调整轴标签字体大小
axis.title = element_text(size = 16), # 调整轴标题字体大小
plot.title = element_text(size = 20)) # 调整图标题字体大小
dev.off()
一般宽松一点会把标准设定为10,严格一点会把标准设定为5。
参考资料
- 医学统计学,主编:孙振球/徐勇勇
- 医学和生信笔记: https://mp.weixin.qq.com/s/yk8Y51ilnnMwdaVcK457KQ
- 宇哥读文献: https://mp.weixin.qq.com/s/-jyP-QicDJvqTlLfx9008w
- 观科研: https://mp.weixin.qq.com/s/icQ8Amfhvx6rwQFhD44Mnw
热门推荐
胡静朱兆祥:一段跨越国籍的幸福婚姻
胡静和朱兆祥:独立与幸福的婚姻秘诀
胡静和朱兆祥:跨越时空的浪漫传奇
胡静与朱兆祥:15年婚姻里的甜蜜与坚守
胡静和朱兆祥:一场跨越17年的幸福婚姻
过期口红的N种创意用途:从清洁剂到DIY指甲油
过期口红变废为宝,环保达人必看!
过期口红也能玩转时尚?这些创意用途让你眼前一亮
过期口红竟然能擦亮银饰?太神奇了吧!
通信网络时钟同步(PTP网络授时服务器)技术探讨

甲午战争背后的干支纪年秘密
公吨和吨的区别,你能分清吗?
长沙爱尔眼科教你ICL术后护理
空姐上班告别高跟鞋,高跟鞋被打工人抛弃了?
《终不似,少年游》:青春已逝,精神长存
刘过《唐多令》爆红:为什么“终不似,少年游”能引发共鸣?
冬日光照下的花朵色彩变幻
蛋糕的营养价值:孕妇和宝宝可以吃蛋糕吗?食用注意事项全解析
红楼梦中贾母为何会被称老太太?是什么意思?
和平精英新春主播赛:谁将成为最大黑马?
城中村救助流浪狗的心路历程
和平精英2025最新兑换码大全及兑换教程
中德携手,充电桩接口统一加速绿色出行
4:3 vs 16:9,谁才是流媒体最佳拍档?
流浪狗泛滥:城市生态的新挑战
流浪狗的悲惨世界,谁来拯救?
TNR计划:解决流浪狗问题的科学之道
国标接口怎么选?充电桩兼容指南
国标充电桩接口标准解析:新能源车充电不再难
提琴起源与制琴发展史