考研高数必备:基本初等函数详解
创作时间:
作者:
@小白创作中心
考研高数必备:基本初等函数详解
引用
CSDN
1.
https://blog.csdn.net/weixin_68812536/article/details/138703776
基本初等函数是高等数学中的重要概念,包括幂函数、指数函数、对数函数、三角函数和反三角函数。本文将详细介绍这些函数的定义、性质和图像特征,帮助读者更好地理解和掌握这些基本初等函数。
幂函数
幂函数的一般形式为 (y = x^u),其中 (u) 是常数。
- 定义域和值域取决于 (u) 的取值。
- 当 (x > 0) 时,所有幂函数都有定义。
- 幂函数前无系数,即系数必须为 1。如果给定一个函数是幂函数,可以通过系数为 1 来计算系数表达式中未知变量的值。
指数函数
指数函数的一般形式为 (y = a^x),其中 (a > 0) 且 (a \neq 1)。
- 定义域:((-∞, +∞));值域:((0, +∞))。
- 单调性:当 (a > 1) 时,函数单调增加;当 (0 < a < 1) 时,函数单调减少。
- 当 (a = 1) 时,其函数图像与指数为 0 的幂函数一样。
对数函数
对数函数的一般形式为 (y = \log_a x),其中 (a > 0) 且 (a \neq 1)。
- 定义域:((0, +∞));值域:((-∞, +∞))。
- 单调性:当 (a > 1) 时,函数单调增加;当 (0 < a < 1) 时,函数单调减少。
三角函数
三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
正弦函数 (y = \sin x)
- 定义域:(x \in \mathbb{R})(全体实数)
- 值域:(y \in [-1, 1])
- 奇偶性:奇函数((\sin(-x) = -\sin x))
- 周期性:(T = 2\pi)
- 有界性:有界((|y| \leq 1))
余弦函数 (y = \cos x)
- 定义域:(x \in \mathbb{R})(全体实数)
- 值域:(y \in [-1, 1])
- 奇偶性:偶函数((\cos(-x) = \cos x))
- 周期性:(T = 2\pi)
- 有界性:有界((|y| \leq 1))
正切函数 (y = \tan x)
- 定义域:(x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z})((x) 不能取 (\frac{\pi}{2}) 的整数倍)
- 值域:(y \in \mathbb{R})(全体实数)
- 奇偶性:奇函数((\tan(-x) = -\tan x))
- 周期性:(T = \pi)
- 有界性:无界((y) 可以取任意实数)
余切函数 (y = \cot x)
- 定义域:(x \neq k\pi, k \in \mathbb{Z})((x) 不能取整数倍的 (\pi))
- 值域:(y \in \mathbb{R})(全体实数)
- 奇偶性:奇函数((\cot(-x) = -\cot x))
- 周期性:(T = \pi)
- 有界性:无界((y) 可以取任意实数)
正割函数 (y = \sec x)
- 定义域:(x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z})((x) 不能取 (\frac{\pi}{2}) 的整数倍)
- 值域:(y \in (-\infty, -1] \cup [1, +\infty))
- 奇偶性:偶函数((\sec(-x) = \sec x))
- 周期性:(T = 2\pi)
- 有界性:无界(但值域被限制在 ((-∞, -1] \cup [1, +∞)))
余割函数 (y = \csc x)
- 定义域:(x \neq k\pi, k \in \mathbb{Z})((x) 不能取整数倍的 (\pi))
- 值域:(y \in (-\infty, -1] \cup [1, +\infty))
- 奇偶性:奇函数((\csc(-x) = -\csc x))
- 周期性:(T = 2\pi)
- 有界性:无界(但值域被限制在 ((-∞, -1] \cup [1, +∞)))
反三角函数
反三角函数包括反正弦函数、反余弦函数、反正切函数和反余切函数。
反正弦函数 (y = \arcsin x)
- 定义域:(x \in [-1, 1])
- 值域:(y \in [-\frac{\pi}{2}, \frac{\pi}{2}])
- 奇偶性:奇函数((\arcsin(-x) = -\arcsin x))
- 周期性:非周期函数
- 有界性:有界((|y| \leq \frac{\pi}{2}))
- 性质:(\arcsin x + \arccos x = \frac{\pi}{2}),(x \in [-1, 1])
反余弦函数 (y = \arccos x)
- 定义域:(x \in [-1, 1])
- 值域:(y \in [0, \pi])
- 奇偶性:非奇非偶函数((\arccos(-x) \neq \pm \arccos x))
- 周期性:非周期函数
- 有界性:有界((0 \leq y \leq \pi))
反正切函数 (y = \arctan x)
- 定义域:(x \in \mathbb{R})(全体实数)
- 值域:(y \in (-\frac{\pi}{2}, \frac{\pi}{2}))
- 奇偶性:奇函数((\arctan(-x) = -\arctan x))
- 周期性:非周期函数
- 有界性:有界((|y| < \frac{\pi}{2}))
- 性质:(\arctan x + \arccot x = \frac{\pi}{2})
反余切函数 (y = \arccot x)
- 定义域:(x \in \mathbb{R})(全体实数)
- 值域:(y \in (0, \pi))(注意:有些定义可能包括端点)
- 奇偶性:非奇非偶函数((\arccot(-x) \neq \pm \arccot x))
- 周期性:非周期函数
- 有界性:有界((0 < y < \pi))
注:反余切函数((\arccot))的定义可能因不同的数学软件或教材而异。
热门推荐
《天道》原著作者豆豆高中学历普通工人,为何写出三部曲销声匿迹
社交孤立时代的孤独感:科技如何重塑人与人的连接?
喝水后很快小便什么原因
仿冒DeepSeek!重要提醒→
糜烂性胃炎吃奥美拉唑管用吗
项目管理中如何应对经验丰富的老员工
华严寺:佛教华严宗的祖庭
手机连拍,AI选择最佳照片的算法原理是什么
苯的结构特点及其应用
急性荨麻疹用什么药物治疗好得快呢
如何做好咨询管理销售
鸡胗营养解析:功效与食用秘籍大揭秘
托克逊县:红枣修剪 让枣农“甜蜜”产业“甜”起来
狂犬免疫球蛋白,守护你多久?答案揭晓!
《塞尔达传说荒野之息》装备升级与烹饪素材地点一览
揭秘嗅觉适应性:为什么我们闻久了某种气味会“习惯”?
揭露社会保险欺诈的真相与防范措施
2025年最佳订婚日子测算分析
专家解读:肥胖红纹能否自行消失?
买气不足!涤纶、锦纶、氨纶原料齐齐降价……“金三”订单何时到来?
新相微停牌筹划重大资产重组,拟取得爱协生控股权
权力的辩护词:解析法律语境下的词汇属性与法理意义
范蠡三次散尽家财的故事
201国道敦化段绝美露营地,来一场与大自然的约会吧!
青少年AIGC时代来临:2025年科技特长生新规解读
PDCA管理循环培训课件
初学者指南:如何使用ed2k链接进行文件分享与下载
约翰·李贝特:动画中的复杂反派角色
名古屋旅游攻略:最佳出游时间、实用信息与注意事项
小城宝妈扎堆卖保险,职场女性35岁后的“必经之路”?