高中数学立体几何知识点总结
创作时间:
作者:
@小白创作中心
高中数学立体几何知识点总结
引用
1
来源
1.
http://m.xuexila.com/way/xuexiguilv/c906545.html
立体几何是高中数学的重要组成部分,它不仅要求学生具备扎实的理论基础,还需要较强的逻辑思维能力和空间想象力。本文将系统地介绍立体几何的基本概念、结构特征、三视图和直观图的画法,以及平面的基本性质和相关公理,帮助学生全面掌握这一知识点。
柱、锥、台、球的结构特征
- 棱柱:
- 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
- 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
- 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
- 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
- 棱锥
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
- 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
- 表示:用各顶点字母,如五棱锥
- 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
- 棱台:
- 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
- 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
- 表示:用各顶点字母,如五棱台
- 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
- 圆柱:
- 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
- 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
- 圆锥:
- 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
- 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
- 圆台:
- 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
- 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
- 球体:
- 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
- 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
空间几何体的三视图
- 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
- 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
- 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
- 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
空间几何体的直观图——斜二测画法
- 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
- ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
空间几何体结构
空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
- 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。
- 侧面:棱柱中除底面的各个面。
- 侧棱:相邻侧面的公共边叫做棱柱的侧棱。
- 顶点:侧面与底面的公共顶点叫做棱柱的顶点。
- 棱柱的表示:用表示底面的各顶点的字母表示。 如:六棱柱表示为ABCDEF-A’B’C’D’E’F’
棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥.
圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
- 圆柱的轴:旋转轴叫做圆柱的轴。
- 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。
- 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。
- 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
- 圆柱用表示它的轴的字母表示.如:圆柱O’O
- 注:棱柱与圆柱统称为柱体
- 圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
- 轴:作为旋转轴的直角边叫做圆锥的轴。
- 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。
- 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
- 顶点:作为旋转轴的直角边与斜边的交点
- 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
- 圆锥可以用它的轴来表示。如:圆锥SO
- 注:棱锥与圆锥统称为锥体
- 棱台和圆台的结构特征
(1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.
下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。
侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。
侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。
顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。
棱台的表示:用表示底面的各顶点的字母表示。 如:棱台ABCD-A’B’C’D’
底面是三角形,四边形,五边形----的棱台分别叫三棱台,四棱台,五棱台---
(2)圆台的结构特征:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.
圆台的轴,底面,侧面,母线与圆锥相似
注:棱台与圆台统称为台体。
- 球的结构特征:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。
- 球心:半圆的圆心叫做球的球心。
- 半径:半圆的半径叫做球的半径。
- 直径:半圆的直径叫做球的直径。
- 球的表示:用球心字母表示。如:球O
几何体的三视图和直观图
- 空间几何体的三视图:
- 定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右);俯视图(从上向下)。
- 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽带;侧视图反映了物体的高度和宽带。
- 球的三视图都是圆;长方体的三视图都是矩形。
- 空间几何体的直观图——斜二测画法
- (1) 在已知图形中取互相垂直的x轴和y轴,两轴相较于点O。画直观图时,把它们画成对应的x’轴和y’轴,两轴交于点O’,且使<x’o’y’=45度(或135度),它们确定的平面表示水平面。
- (2) 已知图形中平行于x轴或y轴的线段,在直观图中分别画呈平行于x’轴或y’轴的线段。
- (3) 已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半。
- (4) z轴方向的长度不变
平面
- 通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.
- 在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:
- a) A∈l—点A在直线l上;Aα—点A不在平面α内;
- b) lα—直线l在平面α内;
- c) aα—直线a不在平面α内;
- d) l∩m=A—直线l与直线m相交于A点;
- e) α∩l=A—平面α与直线l交于A点;
- f) α∩β=l—平面α与平面β相交于直线l.
平面的基本性质
- 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
- 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
- 公理3 经过不在同一直线上的三个点,有且只有一个平面.
- 根据上面的公理,可得以下推论.
- 推论1 经过一条直线和这条直线外一点,有且只有一个平面.
- 推论2 经过两条相交直线,有且只有一个平面.
- 推论3 经过两条平行直线,有且只有一个平面.
- 公理4 平行于同一条直线的两条直线互相平行
热门推荐
手臂无力可能是哪些病征兆?教你初步判断与应对
浙江这座藏在深闺的水乡古镇,充满人间烟火,年味浓厚,适合春节出发
当“HLA-B27”遇见“小菌菌”:揭开强直性脊柱炎的神秘面纱
当“HLA-B27”遇见“小菌菌”:揭开强直性脊柱炎的神秘面纱
大众速腾雨刷:解读雨刮器选择与更换技巧
2025甘孜有哪些大学?甘孜所有大学名单一览表(2所)
流感≠感冒!真的会死人!
文员实习进度安排怎么制定最合理?
客户投诉处理效率低?快速响应优化客户管理投诉
Web系统验证码实现原理详解
除了《头文字D》还有哪些经典的汽车题材漫画?
掌握主力资金流向,解锁股市投资的密码
基于相关特征分析和临床验证的牙周病数据驱动预测模型
如何办理出国护照
商业秘密法律责任有哪些
近2年,红河州11.55万常住人口去哪了?
近红外光谱分析技术及其应用
博物馆引领青少年踏上史前文明“探索之旅”
八字命理中如何识别和分析灾厄命
一分钟教你查贵人在何方,是谁,什么时候出现
汽车外观检测解决方案详解:从硬件到软件的全方位技术解析
额头肌肉跳动的原因是什么
喝红糖姜水的功效与作用
房车旅行露营全攻略:8个安全停靠地点详解
如何确保数据的一致性和完整性
土壤微生物固氮机理研究获进展
三十年悬案真相大白:Intel奔腾FDIV Bug终于找到根源
应收账款确权:确保权益明晰、风险可控的重要措施
手臂无力的五大原因及治疗方法
湖南湘江全景游攻略:深度探索湘江风光带与文化遗迹