MIT华人用AI首次发现物理学全新方程
MIT华人用AI首次发现物理学全新方程
MIT物理学家团队近日宣布,他们开发出一种名为OptPDE的AI系统,成功发现了三个全新的可积偏微分方程。这一突破性进展不仅展示了AI在科学研究中的巨大潜力,更为物理学研究开辟了新的方向。
就在刚刚,MIT物理学家用AI发现了物理学中的新方程。
论文地址:https://arxiv.org/abs/2405.04484
作者表示:这篇论文并没有解决价值数百万美元的核聚变问题,而是在更简单的设置中,引入一个有前途的概念验证。
偏微分方程(PDE),可以说是物理学家的面包和黄油,但它们非常罕见,人类科学家很难只用纸笔就能发现。
为此,研究者们推出了一个名为OptPDE的AI系统。
使用这个AI,就可以发现新的、从未见过的可积偏微分方程!
具体来说,使用了5000个随机初始化的PDE系数值运行OptPDE后,研究者发现了4个可积偏微分方程,其中是一个是已知的,而另外三个是全新的方程。
利用这种首创的机器学习方法,MIT的科学家们为物理学提供了一种全新的研究模式。
从此,可以由人类向系统提供领域知识,AI产生希望的假设,然后再由人类进行解释和验证。
这就实现了整个物理学发现的闭环。
研究方法与发现
当PDE具有守恒量时,它们是可积的(例如,能量是质量弹簧的一个守恒量)。
因此,研究者将OptPDE设计为一个两部分的系统,它可以——
(1)计算任何PDE的守恒量(CQ)数量;
(2)找出使n_CQ最大化的偏微分方程。
下面是(1)在一些熟悉的系统中的实际应用。
因为研究者寻找n_CQ的方法是可微分的,因此要发现新的可积偏微分方程,只需使PDE中的项系数可训练,并通过SGD最大化n_CQ即可。
他们以从u_x => u_xxx^3的项为基础,运行了5000次。
下面是解决方案的3D PCA——
研究者发现,他们得到大多数解,都是4个偏微分方程家族的线性组合,其中一个是KdV方程的一种形式,还有3个方程完全是新增的,在文献中并没有记载!
由此,研究者确认,这些新出现的可积偏微分方程中,至少具有一个守恒量。
也就是,在AI的帮助下,人类科学家发现了一些全新的可积偏微分方程!
不过,如果想解释和分析这些发现,还是要靠人类科学家。
研究者仔细分析了以下红色偏微分方程的简化版本(u_t=u_x^3),发现它表现出断裂、无限的CQ,而幂律衰减为了三角波。
从此,物理学家非常有希望使用OptPDE,来发现更多新颖的可积偏微分方程,来模拟物理学中的复杂现象。
不过,OptPDE要求AI和人类科学家协同工作,作者呼吁:如果这种范式能被物理学界接受,物理学家很可能用现代AI工具做出以前更多新发现。
可积系统:极其罕见,难以发现
可积系统在物理学和工程系中发挥着重要作用,因为易于处理、可预测、可控。
然而,它们极其罕见,难以发现。
传统中发现可积系统的方法是靠纸笔,它侧重于符号推到,还需要考虑到可能系统和守恒量(CQ)的指数级大搜索空间,效率极低。
由此,MIT的物理学家想到:AI可以做什么吗?
为此,他们引入了一个可积系统发现解决方案OptPDE。
此前,已经有许多工作使用极其学习从物理数据和微分方程中发现守恒量,但MIT研究者的方法,对于偏微分方程来说是最可解释的。
更重要的是,此前的方法并不能主动优化和设计偏微分方程。
然而,这个AI可以做到!
虽然过去机器学习方法已经被用来发现守恒量,但这项工作第一次提出——
通过验证和解释可集成系统,AI和人类科学家可以协同工作。
研究团队
这项研究由MIT物理学家团队完成,团队成员包括:
Subhash Kantamneni,目前在MIT攻读物理和计算机科学本科。他在研究实验室、高科技创业公司以及对冲基金等多样化的工作环境中积累了丰富经验。
Ziming Liu(刘子鸣),目前是MIT和IAIFI的三年级博士生,由Max Tegmark教授指导。他的研究兴趣主要集中在AI与物理学(以及其他科学领域)的交叉区域。
Max Tegmark,被大家亲切地称为「疯狂的麦克斯」(Mad Max)。他现任麻省理工学院的物理学教授,发表了超过两百篇技术论文,并多次在科学纪录片中出现。
社会影响
对于这项研究,网友们纷纷表示震撼。
「太烧脑了!如果我正确理解了他们的意思,那这个AI实在是强大到可怕!能够按需生成模型库来模拟物理系统,是非常巧妙的技巧,让我们可以从AI驱动的解决中,节省大量计算。」
「即便只在这些层面上,我们拥有的AI也能为各种科学领域提供新的见解和想法,它们会变得更好!」
「我只是点开看看是不是Max Tegmark大牛的研究,果然如此。」
这位网友则给出了更为专业的解释——
从本质上讲,他们是对偏微分方程应用了奖励函数,因为偏微分方程具有较多的CQs,并且自然系统遵循定律(例如热力学)。
由于发现这些偏微分方程往往非常困难,因此这项工作很有意义,因为它提供了一条将加速计算的计算杠杆应用于任务的途径。
这为生成类似OEIS(整数序列在线百科全书)的资源提供了机会。这就允许来自任何领域的研究搜索这些数据库,看看以前是否已经解决了类似的问题,或者相关的序列或结构是否已经存在,而不需要从头开始。
未来展望
研究者表示,通过MIT研究者引入的这种人类科学家和AI协作的范式,很可能激励人类物理学家为物理学做出新的发现!
这一突破性进展不仅展示了AI在科学研究中的巨大潜力,更为物理学研究开辟了新的方向。随着AI技术的不断发展,我们有理由相信,未来将会有更多类似的科研突破出现,为人类认识世界和改造世界提供更强大的工具和手段。
本文原文来自澎湃新闻